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Abstract—In many application domains, developers aim at
building technical systems that can cope with the complexity of
the world they are surrounded with, including other technical
systems. Due to this complexity, system designers cannot explicitly
foresee every possible situation “their” system will be confronted
with at runtime. This resulted in solutions capable of self-
adaptation at runtime. Future intelligent technical systems will
have to go far beyond such a reactive solution – the general
question is: How can systems themselves define new goals and
new classes of goals in order to increase their own performance
at runtime and without the need of human control or super-
vision? This paper introduces a definition of “computational
self-reflection”, proposes an architectural concept, and discusses
the potential benefit by means of three exemplary application
scenarios. Finally, building blocks to achieve self-reflection are
discussed and a basic research agenda is drafted.

I. MOTIVATION

ΓNΩΘI ΣAΥTON (in English: Know thyself ) is said to
have been inscribed at the wall of the Apollo’s temple at Delphi
in ancient times [1]. This Greek aphorism is often regarded as
a basic directive for human behavior [2].

Self-knowledge basically refers to knowledge of one’s men-
tal state, which includes beliefs, desires, and sensations [3]. It
also includes knowledge about own character traits, manual,
mental, and social skills, strengths, weaknesses, or limita-
tions [4]. Essentially, “know thyself” expresses the need to
know what we know (and what we can afford) and what we
do not know (and what we better should not try to achieve) [2].
Self-knowledge is complemented by knowledge about the
“external” world [3]. Self-knowledge is a term that not only
applies to individuals, but also to groups of individuals or
human societies [2].

Self-reflection is closely related to the concept of self-
knowledge. In general, it aims at exploring (and, of course,
at exploiting) the possibilities and conditions to gather experi-
ence [5]. Thus, humans gain some kind of “knowledge about
knowledge” by “thinking about thinking” [6]. Human self-
reflection is based on the capacity of humans for introspection
in order to learn more about one’s “self” [7]. Today, the term
“self-reflection” is often supplanted by the term “introspec-
tion” [8].

Introspection, which basically means “looking within”
(self-observation or self-monitoring [9]), refers to the ability
of humans to learn about their own (current or past) mental
states (see above) or processes [10]. Such, introspection is a
key concept in epistemology [10]. Introspection complements

other sources of knowledge such as perception, memory, or
testimony [11].

We claim that a computerized technical system needs some
kind of self-reflection to act and react intelligently. As a
key contribution of this article, we introduce and discuss a
holistic concept of self-reflection for such systems, which
includes techniques for self-monitoring, self-assessment, self-
awareness, context-awareness, planning, and, ultimately, self-
improvement. In our notion of self-reflection, knowledge about
the “internal” world must be intimately fused with knowledge
about the “external” world. As these self-reflecting systems
will be able not only to maintain a certain behavioral level,
but even to improve their behavior in uncertain, time-variant
environments, we call them “intelligent” (or “smart”). More-
over, if these systems are part of a larger, distributed system
of systems (SoS), they will also be able to efficiently and
effectively contribute to performance improvements of the
overall system. Possible application areas of such systems or
SOS are, therefore, smart cities, smart mobility, intelligent
robots, cyber-physical systems, or autonomous driving.

Having now introduced some basic terms from the view-
point of philosophy of mind, this article continues by dis-
cussing related work on self-reflection and introspection (Sec-
tion II). Here, we consider social sciences as well as computer
science, where we can find some related work in the field of
reflective programming and multi-agent systems, for instance.
Next, we define the term self-reflection in the context of
intelligent technical systems and present a generic architecture
for such systems (Section III). Section IV discusses some use
cases in order to identify future research challenges. Possible
contributions from related fields to derive solution perspectives
for self-reflective systems are identified in Section V, and
Section VI combines the key ideas in a conceptual research
roadmap that names the basic questions.

II. RELATED WORK

A. Research in Social Sciences

Social sciences make a step from a behavioral to an oper-
ational notion of self-reflection. Reflective practice is defined
as the ability of individuals to reflect systematically on actions
in order to learn continuously [12]. Reflection techniques
are applied in many areas such as education, healthcare, or
management.

Typically, reflective practice is based on some kind of
model that describes the various steps that are passed trough.
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Description:
What happened?

Feelings:
What were your re-
actions and feelings?

Evaluation:
What was good or bad
about the experience?

Analysis:
What sense can you

make of the situation?

Conclusions:
What can be concluded

(generally and about
your own situation)?

Action plan:
What are you going to

do differently next time?

Fig. 1. Structured debriefing model defined by Gibbs [13].

Kolb’s model for experiential learning [14], for instance,
encompasses the four steps active experimentation, concrete
experience, reflective observation, and abstract conceptualiza-
tion in a learning cycle.

Another important model was proposed by Gibbs [13]
who introduced the concept of structured debriefing shown
in Fig. 1. Starting with a description of observations (top),
the debriefing model encompasses six steps of monitoring and
assessing the own behavior as well as deriving conclusions and
making new action plans.

Argyris and Schön mention two nested loops in their
learning model [15]: An inner loop where individuals basically
rely on existing techniques or methods if a situation reoccurs
again, even if an error and/or a correction was made, and an
outer loop where individuals modify their techniques, methods,
or even their objectives to continuously improve. This may be
seen as a distinction between learning as a spontaneous act
(inner loop) and learning as an explicit process (outer loop).

The development of learning over time is illustrated in
Cowan’s model shown in Fig. 2 [16]: Reflection-for-action,
reflection-in-action, and reflection-on-action describe the tem-
poral relationship between acting and reflecting (anticipatory,
simultaneous, and retrospective).

development over time

reflection

prior

for
action

in
action

on
action

further
learning

Fig. 2. Illustration of Cowan’s learning model [16].

In general, reflection may be founded on many knowledge
sources, called “lenses” in the work of Brookfield [17]: the lens
of the autobiography of the learner, the lens of the learner’s
own eyes, the lens of the colleagues’ experiences, and finally
the lens of the theoretical literature.

B. Research in Computer Science

In the field of computer science, the term reflection is
historically associated with programming languages and their
means of self-modifying programs. Initial research on reflec-
tion in programming languages was done in the early 80’s
by Smith for procedural languages [18] and later extended to
object oriented languages by Maes [19]. Maes also defined
computational reflection as “the activity performed by a com-
putational system when doing computation about (and by that
possibly affecting) its own computation.” [19]. In some pro-
gramming systems (e.g., LISP) reflection is implemented using
metaprogramming. A metaprogram is basically not different
from any other program. It processes data and is certainly
able to analyze and also modify it with the virtue that the
data it reasons about is again a program. In cases where the
metaprogram reasons about itself, which matches the idea of
a self-modifying program, the program may be termed to be
(self-)reflective. Programming systems that support this type
of reflection are called procedurally reflective.

Another way to implement reflection is declarative reflec-
tion where self-representation is not implemented in the system
itself, but (as in JAVA, for instance) as an appropriate API. In
this domain, the concept of reflection is subdivided into two
parts: introspection and intercession. Introspection essentially
matches the definition we gave in Section I (“looking within”)
and is associated with data analyzing (e.g., what methods
belong to a certain class) whereas intercession, i.e., the ability
to alter itself, corresponds to data modification. With respect
to intercession we further distinguish structural reflection (e.g.,
adding a new instance variable to a class at runtime) and com-
putational reflection (also behavioral reflection; e.g., altering
the code of a method at runtime) [20]. However, the main
purpose of reflection in the programming context is not to
write self-modifying algorithms but to circumvent restrictions
of the programming language or to investigate the structures of
objects at runtime (e.g., to check if a certain method is present
or for debugging purposes).

Research on reflective systems was also done in the do-
main of multi-agent systems. Rehák et al. suggest an abstract
architecture to enhance multi-agent systems with reflective
properties [21]. In essence, the approach is based on the
architecture illustrated in Fig. 3. The reasoning layer imple-
ments the agent’s problem solving abilities, while the reflective
layer lies on top and observes the lower one. Again the
process of reflection is subdivided into two parts. The cognition
module, which implements self- and mutual-awareness, closely
resembles introspection. It manages a model of the agent, the
environment, and its social neighborhood. This model is used
as foundation for meta-reasoning, that is, to identify what
behaviors might be modified to better adapt the system to its
environment. The adaptation is done in the reflection module
where an abstract representation of the desired behavior is
processed. This does not necessarily result in new algorithms
but in changing parameters of the engaged algorithms to alter
their behavior. Therefore, this type of reflection is called
behavioral reflection opposed to structural reflection where
internal data structures are reorganized. The authors of [21]
also suggest computational reflection itself as technique to
manage reflective processes, whereby preceding changes made
to the system are used as knowledge base to reflect on.
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Fig. 3. Architecture of a reflective agent, based on [21].

Bellman and Landauer adopted the concept of computa-
tional reflection to solve multi-objective optimization prob-
lems [22]. They point out that optimization in dynamic systems
is hard, especially in complex systems consisting of multiple
layers with different self-optimizing processes. This is due to
contradictory objectives and the fact that most self-optimizing
processes are not using a self-model in addition to a context
model and, thus, are “mindless” (i.e., utilizing single loop
learning). To address these problems the different optimiza-
tion tasks are folded into a web of reflective processes, the
“reflective web”. Basically, the reflective web is a provisional
approach until there are mathematical methods that map op-
timizations of one layer to the next higher layer to combine
optimizations. Unfortunately, the organization of the web is
not self-developed (i.e., autonomously done by the system)
and must be done by hand for each application.

To model reflective processes so-called wrappings are used
which comply to a more abstract representation of resources
that allows to keep problems and their solutions separated [23].
This leads to a system that does not “call functions”, “issue
commands”, or “send messages” but instead “poses problems”.
To solve a posed problem, the system “applies” resources
(i.e., optimization algorithms) in an automated manner. As a
result of representing everything as resources, that can also be
replaced at any given time, the system is highly flexible and
well fitted to support computational reflection. The described
technique was evaluated in the CARS case study, where differ-
ent cars with diverse properties assessed behavioral strategies
under constraints to reach a given goal. The constraints (e.g.,
low energy consumption or optimal sensor utilization) could
be contradictory and even change at runtime, thus creating
a dynamic multi-optimization problem. Initially, the charac-
teristics of each car were unknown and an appropriate self-
model had to be learned by every system. The evaluation
itself relied on computational reflection with different types of
reflection (i.e., different scopes of responsibilities) and revealed
that computational reflection actually is a possible approach
to solve multi-optimization problems – but in this case with
the drawback of low autonomy (the reflective web must be
organized by hand).

III. COMPUTATIONAL SELF-REFLECTION IN
INTELLIGENT TECHNICAL SYSTEMS

In this section we give a definition of the term self-
reflection in the context of intelligent technical systems and
we propose a generic architecture for a system with the ability
of self-reflection.

A. A Definition of Computational Self-Reflection

In this article, we will rely on the following working
definition of computational self-reflection:

Self-reflection in intelligent technical systems (or computa-
tional self-reflection) is the ability of the system to continuously
monitor and improve its own behavior in an uncertain, dy-
namic, and time-invariant environment for situations that may
not have been anticipated at design-time of the system.

Self-reflection is based on complementary techniques

1) to monitor and to assess the environment (including
other, similar systems) and the system’s own behav-
ior,

2) to model the system’s own knowledge about the envi-
ronment and about its own behavior (including meta-
knowledge such as experience gained by applying
knowledge), and

3) to define own goals, to find new ways to solve
these goals (including combination of several goals or
conflict solving), and to trigger appropriate changes
of own system parameters, algorithms, structure, etc.

These aspects can also be seen as requirements that must be
fulfilled to call a system “self-reflective”.

Computational self-reflection goes far beyond self-
adaptation which could also be seen as the “inner” of two
nested loops which are not necessarily temporally synchro-
nized. Self-reflection in the above sense includes (cf. Sec-
tion II) introspection and intercession, it includes reflection
for, in, and on action, and its three basic steps may be
refined further and realized as proposed by Gibbs in his
structured debriefing model, for instance. Computational self-
reflection is based on different knowledge sources such as a
system’s own sensor information, its experience (and, possibly,
prior information provided at design-time), and any kind of
information that may be provided directly or indirectly by other
(possibly also self-reflecting) systems. Particular challenges
arise from the fact that in uncertain environments sensor
information may be noisy or missing, communication may be
disturbed or delayed, and feedback about the system’s own
actions cannot or not easily be obtained analyzing sensory
information. Humans may, as additional knowledge sources, be
part of a self-reflection process. Altogether, self-reflection can
be regarded as being founded on self-awareness (knowledge
about own knowledge and own behavior, including the past),
context-awareness (knowledge about the environment), and
mutual awareness (knowledge about other, similar systems).

Clearly, a system of systems (SoS) is again a (distributed)
system with particular challenges regarding self-reflection abil-
ities. If such an SoS is not organized in a centralized way,
for instance, self-reflection must be realized in a distributed
manner by self-organized collaboration techniques. SoS may



be heterogeneous and open, i.e., systems may enter or leave the
SoS at runtime. With its focus on self-improvement including
the definition of new (kinds of) goals, self-reflection in SoS
goes beyond adaptation in such systems (cf. the field of
collective adaptive systems [24]).

B. A Generic Architecture for Computational Self-Reflection

The architecture shown in Fig. 4 is a blueprint for a
technical system with self-reflection abilities. Variants of this
architecture are certainly meaningful depending on specific
application scenarios, see below. The Organic Computing com-
munity has proposed the generic Observer/Controller (O/C)
architecture [25] that can be adopted as in Fig. 4 for self-
reflecting technical systems. Here, we explicitly add knowl-
edge models (K) to each O/C pair that include appropriate
modeling techniques (e.g., machine learning techniques [26]).
Basically, this architecture can also be seen as hierarchy of
control loops or MAPE-K (monitor, analyze, plan, execute)
loops [27].

Reflection
layer

O3 C3

K3

Adaptation
layer

O2 C2

K2

Reaction
layer

O1 C1

K1

O4

C4

K4K4K4K4

Collaboration
layer

Intelligent
technical

system with
ability for

self-reflection

Other
reflecting
systems

SuOC

ActuatorsSensors

Fig. 4. Reflection architecture for an intelligent technical system.

The System under Observation and Control (SuOC) is the
environment in which the system is embedded. The SuOC is
observed by means of sensors; actuators may influence the
processes in the SuOC. As an example, we may consider a
robot (reflective system) in a specific environment (SuOC).

The bottom layer (Reaction Layer) realizes the standard
functionality of the system. The system might have to ful-
fill real-time constraints. As an example, the O1/C1 pair of
components extract appropriate features from sensor signals,
categorize these information using classifiers trained from
sample data, and trigger appropriate actions for the recognized
situation based on knowledge contained in K1.

The Adaptation Layer enables the system to autonomously
– or semi-autonomously if other systems are involved through
the Collaboration Layer – deal with new situations arising at
runtime. Here, “new situations” does not mean that the very
basic kind of this situation cannot be anticipated; only the

point in time when this situation arises cannot be predicted.
Moreover, “deal with” means that the system will be enabled
to maintain a certain performance degree. For this purpose, the
O2/C2 components analyze the new situation relying on more
abstract knowledge about the behavior of the Reaction Layer
stored in K2 (e.g., experience gained while applying rules at
the Reaction Layer), and trigger appropriate actions, e.g., an
adaptation of the Reaction Layer’s functionality (e.g., in C1),
an exchange or modification of K1 (via C1), etc.

The Reflection Layer realizes the three building blocks of
self-reflecting systems sketched in the above definition in its
components O3, K3, and C3. Note that we do not claim that, in
general, self-reflecting systems are able to guarantee to always
improve their behavior. In special cases, self-reflection may
even result in performance degradation. Thus, the Reflection
Layer must include techniques to assess the potential gains
and risks of adapting the lower layers of the system. We
claim that self-reflection must lead to a long term evolution
of the system which yields, on average, statistically significant
performance improvements. However, any possibly existing
hard side conditions (e.g., whenever the system performance is
critical and a degradation not acceptable) must be considered.
Thus, the Reflection Layer decides whether to let the lower
layers proceed with the currently used techniques or whether
to trigger their adaptation (e.g., parameters, algorithms, or even
structure), for instance.

The Collaboration Layer, which can be triggered either
by C2 or C3, realizes the communication with other, similar
systems and (depending on the application) even humans.
It keeps models (K4) about their knowledge (obtained with
efficient exploration techniques) and it is able to observe and
assess their knowledge and to ask them very specific questions
(via O4 and C4).

As already mentioned, variants of this architecture are
necessary depending on the application. Examples are

• an architecture with direct connection of the Reaction
Layer to the Collaboration Layer (C1 ↔ C4), e.g., to
realize coordinated collective reactions under real-time
constraints, or

• an architecture with indirect coupling of systems in
a heterogeneous SoS via the SuOC (e.g., if no direct
communication is possible).

IV. APPLICATION SCENARIOS

In this section, we discuss three exemplary application
scenarios where the usage of self-reflection techniques might
be beneficial. These scenarios address different application do-
mains and describe an increasing level of complexity. The first
scenario deals with a team of soccer robots that behave as a
team. This scenario mainly focuses on heterogeneous hardware
sensors and is hence characterized by noisy data. Only small
groups of robots (typically 4 to 7) are considered. The second
scenario deals with traffic management in urban environments.
Compared to a soccer robot, less kinds of sensors are used
(i.e., only induction loops) which leads to decreased noise
effects. Urban traffic infrastructures consist of larger group
sizes in which self-reflection (and reflection about others) can
be performed – typically, networks of 10 to 100 intersections



are considered. Finally, we take the simulations of natural
organisms / systems into consideration. These systems are
characterized by less noise and a potentially very large amount
of participating entities (several thousand). This section in-
troduces these three scenarios, describes currently available
approaches, and explains how self-reflection techniques will
lead to a benefit.

A. Scenario 1: Soccer Robots

Scenario: RoboCup is an international joint activity to
promote research on autonomous robots. It is an attempt to
advance a range of technologies that are needed for mo-
bile autonomous robots that act as a team, including image
processing, real-time sensor data processing, sensor fusion,
embedded systems, artificial intelligence planning, multi-agent
coordination protocols in unreliable environments, and more.
RoboCup chose robotic soccer as a central application domain
for their research because soccer is well known world-wide, it
is a very dynamic and thus challenging game, and the rules of
the game are clearly defined and widely accepted. The stated
ultimate goal of the RoboCup project is to have by the year
2050 a team of fully autonomous humanoid robots that can
beat the human world champion in soccer. Other application
domains in RoboCup are search & rescue and service robotics.

In order to act as a team and achieve a common ob-
jective, robots need to know about their own current status
and task allocation, the status and task allocations of their
team members, as well as the status of their environment.
All team members contribute their perceptions to a “shared
world model” that represents the fused knowledge of the
individual team members and is used as a foundation for
distributed decision making. Clearly, reasoning and decision
making cannot be done in a centralized fashion due to the
dynamics of the game and the unreliability of the (wireless)
communication environment. Each soccer robot decides by
itself what to do, but tries to coordinate its activities with its
team mates. From an information model point of view, the
shared world model is a set of replicated variables with weak
consistency guarantees.

Current approach: A team of soccer robots in RoboCup
represents a closed group of collaborating (mostly homo-
geneous) agents. Their decentralized decision making about
strategies and task allocation requires self-reflection, whereby
self-reflection happens at the individual robot level, e.g., a
robot must recognize its own situation and available action
options, as well as at the team level, e.g., the team members
must know whether the team as a whole possesses the ball
even if individual team members cannot see the ball currently.
(The ball may be hidden by other players or it may be out of
range for the built-in computer vision.) Obviously, important
strategic behavior decisions (such as “attack” or “defend”)
depend on such a collective awareness at the team-level. Some
team decisions require strict consistency (e.g. for a mutually
exclusive activity), others tolerate eventual consistency (e.g.
the robots’ view of the exact position of the ball on the play
field may be treated with relaxed consistency requirements
because the ball is moving very fast anyway). All of this
needs to be considered in an application domain that requires
(soft) real-time behavior and where communication is poten-
tially unreliable. Distributed storage, replication, consistency

guarantees, and fault tolerance together make maintaining the
shared world model a difficult problem. Appropriate systematic
support is lacking.

Self-reflection: Data consistency concerns regarding the
shared world model in multi-robot systems in highly dynamic
environments is only one of many open research questions
that are related to self-reflection in such systems. Others
are: suitable knowledge representation models, monitoring
the effects of collective decisions, on-the-fly learning about
success and failure of actions in certain situations, how to re-
plan if “the world” changes substantially or too many failed
actions happen, and many more. In addition, if we assume open
and heterogeneous multi-robot systems, such as in Search &
Rescue scenarios, where robots may come and go and where
robots of different rescue teams need to collaborate among
themselves as well as with humans, a whole new bag of
questions opens up. For example, how are the self-reflection
models merged if different, possibly heterogeneous, multi-
agent teams enter the scene? How do we extend the shared
world model on-the-fly? What kind of meta-level domain
information is required and how is it maintained? How do
we link the robots’ view of the world to the know-how and
perceptions of human operators? Clearly, there are plenty
of challenging open research questions that require further
research. Often a rudimentary form of self-reflection is used
implicitly in multi-robot systems. However, we need a strong
systematic foundation for explicit self-reflection, especially at
the team level, in order to facilitate monitoring, awareness,
reasoning, decision making, adaptation, learning, collaboration
with other teams and human operators, runtime testing and
validation, system evolution, and more.

B. Scenario 2: Vehicular Traffic Control

Scenario: Increasing mobility and rising traffic demands
cause serious problems in urban road networks – the infras-
tructure’s capacity is limited and current installations face
congestion and non-efficient behavior. As a result, research
and development investigate solutions for intelligent traffic
management systems (ITS). An ITS mainly consists of in-
tegrated concepts for traffic-adaptive signalization of traffic
lights, coordination of intersections, route recommendations
to drivers and incident detection (see, e.g., [28]). The goal
is to react as fast as possible and as appropriate as possible
to changing traffic conditions, disturbances (i.e., accidents or
construction work causing road blockades), and evolving traffic
behavior. Typically, the success of solutions is quantified by
metrics such as the averaged waiting times (i.e., expressed
as Level of Service [29]), the throughput in vehicles per
hour, the number of stops when passing a road network, or
environmental figures such as pollution.

Current approach: As outlined before, ITS consist of
several interconnected components. For traffic signalization,
fixed-time control and traffic-actuated control strategies are
distinguished. Thereby, either a static behavior is defined or the
amount of approaching traffic is estimated based on detector
information (mostly perceived by induction loops in the street
surface) – which then is considered in the control behavior.
The same detectors are also used to derive an overall traffic
situation of the network – allowing for further higher-level
actions such as route recommendation to drivers. Typically, all



current installations are characterized by non-reflective solu-
tions (see, e.g., [30]). Detector data is smoothed and analyzed,
but reasoning in the sense of correcting noisy detector data
or recognizing recurring patterns has not been applied yet. For
instance, such information would be necessary to automatically
detect incidents. In those installations where traffic condition
estimation is processed, mostly high-level stream information
is taken into account – this is not suitable for inner-city
traffic management. Additionally, switching between goals as
reaction to the particular traffic conditions is not considered.
For instance, high traffic conditions demand for an increase of
the throughput, while low traffic conditions should be handled
by decreasing the averaged waiting times (these goals are
contrary, see [31]).

Self-reflection: A self-reflective approach can go far be-
yond the current approaches. Instead of just smoothing and
utilizing sensor data to determine the current system status,
a consistent and more appropriate description of the current
situation can be generated. The potential benefit is to derive
and adjust models of the road segments and their traffic
conditions – for instance, including models to estimate the
existence and the status of possible parking spaces.

Therefore, intersection controllers need further abilities.
First, they have to monitor and to assess a) their own behavior
and status, b) behavior and status of neighboring intersection
controllers, and c) the environment (e.g., roads in-between,
detector capabilities, etc.). For all these influencing entities,
models have to be derived that are consistent with the cur-
rent detector readings. Based on this, intersection controllers
can collaboratively reason about the current status – for
instance, detect parking spaces between them where vehicles
are buffered for a certain period.

Second, these models have to incorporate the experiences
with utilizing them and consequently the certainty about their
correctness. Considering the previous parking space example,
deviations between leaving and arriving vehicles between
intersections connected with a road can be also caused by in-
cidents decreasing the road’s capacity. Finally, the intersection
controllers have to decide about their current and long-term
goals. Considering the varying aforementioned goals for traffic
control, intersection controllers have to decide about the best
strategy in the presence of conflicting goals. In the context
of intelligent traffic management, self-reflection at the level
of individual intersection controllers, intermediary regions,
and at the system level promise significant improvements
regarding situation assessment and runtime decisions (i.e.,
route guidance).

C. Scenario 3: Simulation of Natural Processes

Scenario: The incessant and multi-facetted empiric investi-
gation of natural processes has unearthed patterns, hypotheses
and laws at various degrees of abstraction. Their integration
– as disparate their representation, as deviating their scales –
has culminated in multi-scale approaches that link otherwise
independent models such as black-boxes, intertwining results
of some with the parameter sets of others (for a review
of multi-scale modeling techniques see, for instance, [32]).
Bottom-up models pose a powerful alternative as they yield
system properties observed at higher levels of abstraction as

emergent effects of underlying interaction processes [33]. The
need for comprehensive model data at an evenly fine-grained
level of abstraction, which is often realized by means of
agent-based representations, is accompanied by other inherent
challenges that arise from bottom-up design. For instance, the
models’ emergent properties need to be (top-down) consistent
with the predictions of the respective higher-level stand-alone
models [34]. Broad low-level model integration also implies
great computational costs due to open, i.e. not fully predeter-
mined, behaviors of the consequently large number of model
components.

Current Approach: Model adaptation is an emerging
trend for scaling agent-based models, as it often possible to re-
duce the (initially inherently great) model complexity based on
observation of the resultant simulation processes. In one way
or another, agents are reduced in their individual complexity
or merged to reduce the overall complexity of the model. In
[35], an approach is described that clusters and merges agents
based on principle component analysis of their attributes.
Instead of statically merging agents, it may be beneficial
to manage their subsumption dynamically based on current
model querries [36]. In [37], one of the authors presented
a concept where observer agents would be immersed into a
simulation and proactively seek interaction patterns to simplify
the system model during runtime. Due to the distributed nature
of the model, the necessary changes to the model could be
effected locally by the observer agents themselves. Recognized
patterns might be transient and the learned simplifications
and the implemented abstractions might, therefore, become
invalid after some event or after a sequence of events –
certainly after some period of time. Therefore, confidence [38]
is built up over time and periods of validation of previously
made abstractions grow accordingly. Validation is performed
by releasing agents subsumed by an abstracting meta-agent
back into the simulation and testing whether their behavior is
in line with the predictions. If prediction and actual lower level
behavior deviate, the abstraction is revoked and the lower-level
agents become part of the simulation model again. On the other
hand, if the abstraction holds, the meta-agent itself becomes
subjected to observation and potentially to further abstraction
by an observer agent. Thus, the system model is represented
as a set of dynamic hierarchies of meta-agents. Aspects of
this approach to self-organized model adaptation have been
implemented in the context of gene signaling pathways and
blood coagulation processes, implementing different means for
pattern detection (from co-variance measures to process fre-
quencies) and agent subsumption (approximation with artificial
neural networks or rule-based meta-behaviors.

Self-reflection: Self-organized model adaptation necessi-
tates the aforementioned capacities of self-monitoring, self-
assessment, and self-improvement (Section I). At this point,
there are implementations that address these requirements in
different ways, but a clear implementation strategy, a clear
choice for specific methods has not materialized, yet. The
idea of a distributed model, as provided by agent-based ap-
proaches, promotes locally performed observation and locally
implemented model abstractions – as a consequence, numerous
“selves” reflect upon the system model and modify it in
accordance with their observations. Similarly to collaborative
self-organizing systems, challenges of coordination and op-
portunities for fruitful imitation and synergy arise. The self-



reflection of the whole system model, however, could emerge
from observation of all the deployed agents, observers, and
meta-agents and from analysis of their (dynamic) interplay.
In the context of large-scale agent-based simulations, self-
reflection at the level of individual model agents, intermediary
model clusters, and at the system level promise significant
improvements regarding simulation runtime and accuracy.

V. BUILDING BLOCKS FOR TECHNICAL
SELF-REFLECTION

Self-reflection is an open field of research. Thereby, re-
search can make use of results and methods from several
existing areas. This section identifies possible contributions
from related fields and describes possible solution perspectives
to develop self-reflective systems. As already considered in
the motivating application scenarios, self-reflective systems are
specific instances from the group of self-organizing systems.
As a basic for the design of self-reflective systems, architec-
tural concepts from the Autonomic and Organic Computing
domains can be adapted. Within such an architecture, self-
reflective solutions will make heavy use of models – either
generated at design-time or at runtime. Hence, initiatives
like Models@Runtime will play a major role. Since system
behavior and models are based on incomplete and noisy sensor
data, concepts to deal with uncertainty, pattern recognition,
emergence, and anomaly detection are required – these are
covered by, e.g., data mining or probabilistic theory. The
potentially most important capability of self-reflective systems
will be to define new goals and new classes of goals in
order to increase its own performance. In order to find novel
ways for goal strategies, solutions might again make use of
the aforementioned techniques – since this is a new research
direction, further re-usable methods have to be identified.
Finally, the result of self-reflection in cooperative groups of
systems will result in collections of self-adaptive and self-
reflective systems – which is closely related to collective
adaptive systems and the corresponding theory.

A. Organic Computing

Organic Computing (OC) [39] and similar scientific initia-
tives such as Autonomic Computing [27] postulate that integra-
tive design of complex, open systems demands for a paradigm
shift in engineering. Instead of designers anticipating all possi-
ble system configurations at design-time, a system needs to be
flexible and be empowered by great degrees of freedom. Only
then, the system is enabled to manage itself and to adjust itself
to changing conditions at runtime – meaning that decisions
that are typically made at design-time are now addressed by
a system’s runtime components. Since natural systems are
typically characterized by highly robust and adaptive solutions,
OC investigates means to transfer nature-inspired processes to
technical systems. The goal is to develop life-like properties
for technical systems. In the context of self-reflective systems,
OC can provide several mechanisms that can find their way
into future solutions. Especially the architectural concept such
as the generic Observer/Controller pattern [25] or the MAPE-
K cycle [27] serve as platform for further research (see
Section III-B). Additionally, OC investigated mechanisms to
detect emergent effect in self-organized systems. Methods for
the quantification of emergence such as in [40] can serve

as a basis for novelty, anomaly or obsoleteness detection.
Furthermore, modifications and extensions of these concepts
might be useful to model aspects such as concept drift.

B. Models@Runtime

Self-reflection relies on the system’s capability to au-
tomatically build models of itself, other systems, and the
environment. The research field of Models@Runtime started
with the motivation that model-driven engineering processes
generate varying models at design-time which are not further
used at the system’s runtime. Hence, possibilities to extend
the applicability of models and abstractions during operation of
the system to be developed are investigated. The motivation of
the conducted research is to find ways for providing effective
technologies for mastering and managing the complexity of
evolving software behavior. Thereby, not just the design-time
– but also the runtime aspects can be taken into account making
solutions more appropriate [41]. Since Models@Runtime is a
very heterogeneous initiative, several concepts from different
fields (such as model-driven development processes, require-
ments engineering, or validation and verification) can serve
as input to investigate self-reflective systems. Especially work
on the generation of behavioral models for dynamic adaptive
systems [42] provides a good starting point.

C. Machine Learning

Machine Learning (ML) obviously plays a key role in self-
reflection. Of particular interest are techniques that allow for
a high degree of autonomy in learning. Assuming that (fully)
supervised learning is not possible, we may rely on techniques
for reinforcement learning or semi-supervised learning, for
instance. In the field of OC, ML techniques are used quite
frequently as building blocks for many applications. To keep
user feedback at a minimum, learning is accomplished by
different approaches as, for instance, exchanging information
(e.g., decision rules) between components in a distributive
system [43], [44], using active learning techniques to effec-
tively and efficiently integrate human domain experts [45],
simulating the environment [28], or imitating the behavior of
other systems [46].

Introspection and intercession challenge a system to dis-
cover patterns, to draw the right conclusions and to effect
appropriate changes. The successful pursuit of these steps
greatly depends on the computational representations and the
model building approaches that mediate between them. Ideally,
a single representation would lend itself to all three steps and,
in addition, be flexible in terms of data types and value ranges,
be discriminative, human-readable, offer precise extrapolation
for complex data sets, and, most importantly, support the
generation, combination and incremental variation of model
hypotheses. One of the authors has proposed the utilization
of polynomials for approximation of time series—not only
are there efficient fitting algorithms but they also allow for
aggregate, hierarchical composition [47]. Combinations of gen-
erative and discriminative models, for instance classification
based on kernel functions [48] or tracking based on latent
appearances [49] clearly show that an integrative approach
is feasible. Most frequently, working with learned meta-data
puts forth two-tier approaches to representation, where the
meta-data management and meta-data contents are only loosely



coupled, if at all (see for instance [35] or [50]). As a self-
reflective technical system needs to adjust itself to specific
circumstances and conduct specialized actions just as much
as it is required to learn generalizations from experience that
may equally improve its performance and adaptivity, the search
for generic, efficient and expressive representations is another
important aspect of self-reflection in technical systems.

D. Probability and Possibility Theory

Uncertainty is a general term that refers to missing, noisy,
or possibly wrong information, for instance. We are uncertain
concerning the exact values of observations (sensor measure-
ments) from the SuOC, concerning the exact parametrization of
our knowledge models at various levels, concerning the exact
time stamps of events due to communication problems (e.g.,
delays) etc. Methods from possibility theory or probability
theory (e.g., type-II fuzzy systems, Dempster-Shafer theory
of beliefs [51], [52], or second-order probability distributions
[53]) can be used to model various kinds of uncertainty at
various levels. A numerical quantification of uncertainty will
support decision processes, e.g., if potential gain or risk of
possible decisions can be estimated.

E. Data Mining

The concept of “knowledge about knowledge” is also
known in the field of data mining [54]. Data mining can
be seen as a multi-step process as shown in the data mining
pyramid (see Fig. 5) which has been introduced by Embrechts
et al. in [55]. The idea of this pyramid can briefly be sum-
marized as follows: Raw data are pre-processed to condense
application-specific information in attributes or features. Then,
knowledge is extracted, e.g., by building classification or
regression models. By analyzing this knowledge off-line and
later on by using it in a given application (on-line) it is possible
to come to a deeper understanding of its working principles
and to gain some experience in using it, respectively. Both will
support the efficient and effective application of the knowledge.
Finally, this kind of meta-knowledge will eventually help to
solve similar kinds of application problems. That is, the final
step of wisdom is reached by transferring the knowledge to
other application domains.

data

information

knowledge

understanding

experience

wisdom

Fig. 5. The data mining pyramid (adopted from [55]).

F. Dependency Modeling

Self-reflective systems can work in cooperation with other
systems. Thereby, dependencies between these systems can
exist. Consider the soccer robots as introduced in Section IV-A:
If robot A is covering the role of a goalkeeper, this role

is not available for other team mates. Hence, dependency
modeling is needed for self-reflective systems as it supports the
environment-awareness. These dependencies can be explicit in
terms of acting on simple parameter setting (such as synchro-
nized phases in traffic control to establish Progressive Signal
Systems), on group structures (e.g., cooperation with entity
X prohibits cooperation with entity Y), or on organization
schemes (i.e., in the robot scenario). Furthermore, implicit and
hidden dependencies can exist that are much harder to detect.
For instance, the quality of the decision to route vehicular
traffic via a certain link depends highly on decisions of other
nodes in the network to route their traffic to a certain degree via
different links, otherwise traffic jams can appear (the locality of
this impact is not restricted to the direct neighborhood). For
explicit dependencies, the knowledge models of preliminary
work has been mostly adequate, since self-learning systems
can find such relations based on, e.g., reinforcement learn-
ing techniques. For implicit dependencies, methods to model
dependencies between randomized variables are needed. For
instance, risk measures [56] from Operational Research or
copula models [57].

G. Collective Adaptive Systems

A Collective Adaptive System is a collection of hetero-
geneous autonomous entities that have autonomous goals and
behaviors, but cooperate with one another and adapt collec-
tively in order to accomplish their own tasks or a common
task and reach their individual goals or a common goal in
an efficient and effective way [24]. It can be seen as the next
step and logical continuation from context-awareness and self-
adaptation of a single application or system. Collective adapt-
ability based on information and communication technology
(ICT) is targeted at large scale distributed systems that are
composed of large numbers of interacting and heterogeneous
hardware / software components [58]. Moreover, Collective
Adaptive Systems typically operate with a high degree of
autonomy, under varying and often unpredictable conditions,
and in open dynamic environments. Often, these systems be-
come more and more embedded in the fabric of organizations
and society at large. Thus, they are used by a large number
and a wide variety of users, which makes them true socio-
technical systems [59]. Collective adaptation is often viewed
as a prerequisite for Collective Intelligence [60].

In order to reason about and execute collective adaptation
activities participants need a shared knowledge base, i.e.,
collective action requires self-reflection. Based on the shared
knowledge and a given objective function, individual actors
will decide about their contributions to collective activities.
Objective functions that operate on the self-reflective model
may be specified as, e.g., utility functions, constraints, or rule-
based. Scalability of the underlying self-reflection mechanisms
is a must, but often difficult to realize and to prove. Monitoring
and measuring the degree of success of collective adaptations
is a difficult problem. Likewise, the collective interaction and
adaptation will likely lead to emergent system properties and
behavioral patterns that need to be understood and influenced.
If we focus on the socio-technical aspects it becomes obvious
that self-reflection and collective adaptation can involve the
collecting and processing of large amounts of sensible personal
user data. These are just a few open questions that need to be
addressed by research.



VI. RESEARCH AGENDA

The previous section motivated and described several dif-
ferent building blocks as basis for research on self-reflective
systems. Based on this, we define a research agenda towards
fully self-referential systems that includes open questions to
be addressed. This research agenda is aligned along the archi-
tecture as illustrated in Figure 4. The major research issues
are concerned with Reflection and Collaboration Layer, while
the work on Reaction and Adaptation Layer will benefit from
preliminary work. The remainder of this section discusses the
topics to be investigated by following the architectural layers
in increasing order.

Reaction Layer: The Reaction Layer realizes the reactive
modification of the system’s behavior. Thereby, research will
mainly focus on building appropriate knowledge models. This
is accompanied by work on quantifying the degree of certainty
about the particular models representing the own, the external
and the environmental behaviors. Additionally, concepts to
choose the desired actions (e.g., parameter configurations,
selection of strategies, etc.) have to take this information into
account. Furthermore, deviations between model and reality
have to be detected as fast and as appropriate as possible.

Adaptation Layer: Since this layer enables the system
to autonomously deal with new situations arising at runtime,
mechanisms to maintain a certain performance degree have
to be available. Besides the existing work (especially in the
context of OC), novel methods to quantify the uncertainty
about perceived information are needed. For this purpose,
models (the K2 component in Figure 4) have to be adapted
online. The most important questions arising here are: How to
detect relations in behavior and performance at runtime and
without prior knowledge.

Reflection Layer: This layer incorporates the basic self-
reflection capability by considering the three general aspects of
reflection. Thus, research dealing with the Reflection Layer has
to be able to assess the potential gains and risks of available
adaptation strategies for the lower layers of the system. Addi-
tionally, we need mechanisms to (cooperatively with others)
build models of the possible behaviors and quantify their
benefit and the corresponding risk. This has is accompanied
by the need to detect dependencies between individual systems
– resulting in an distributed optimization process with several
participating individuals. Thereby, cooperative runtime mod-
eling plays an important role. Furthermore, the major issues
of self-reflection are located at this layer: How can systems
themselves define new goals and new classes of goals in order
to increase their own performance? This is accompanied by the
need to identify appropriate techniques that can be utilized to
find novel ways for goal strategies – resulting in the question
of how to modify them and what is additionally needed to
fulfill the requirements in developing novel goals. Such a self-
managed goal adaptation and generation process has to be
guided – and obviously controlled at a more abstract level.
Hence, questions arise how to guarantee a certain behavior
even in the presence of changing goals – and how to control
the resulting behavior in case checking the accordance with a
pre-defined goal is not an option, any more.

Collaboration Layer: Here, the goal is to develop new
basic technologies to realize collective self-reflection. A col-

lection of autonomous self-organized systems does not neces-
sarily require that each system belongs to the same authority.
Hence, we cannot assume that knowledge can be easily trans-
ferred from one entity to another. In this context, concepts for
abstract knowledge representations, demand-oriented exchange
of these, and a common “language” for self-reflective systems
are needed.
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2011, pp. 431 – 446.

[29] National Electrical Manufacturers Association, “NEMA Standards Pub-
lication TS 2-2003 v02.06 – Traffic Controller Assemblies with NTCIP
Requirements,” Rosslyn, Virginia, USA, 2003.

[30] A. W. Sadek, “Artificial Intelligence Applications in Transportation,”
Transport Research CIRCULAR, vol. EC-113, 2007.

[31] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, C. Müller-Schloer,
and H. Schmeck, “Possibilities and limitations of decentralised traffic
control systems,” in 2010 IEEE World Congress on Computational
Intelligence (IEEE WCCI 2010), July 18-23, 2010. Barcelona, Spain.
IEEE, 2010, pp. 3298–3306.

[32] M. Horstemeyer, “Multiscale modeling: A review,” Practical Aspects
of Computational Chemistry, pp. 87–135, 2010.

[33] C. Jacob, S. von Mammen et al., LINDSAY Virtual Human: Multi-scale,
Agent-based, and Interactive, ser. Advances in Intelligent Modelling
and Simulation: Artificial Intelligence-based Models and Techniques in
Scalable Computing. Berlin / Heidelberg, DE: Springer Verlag, 2012,
vol. 422, pp. 327–349.

[34] D. Noble, The music of life. Oxford University Press Oxford, 2006.
[35] A. R. Stage, N. L. Crookston, and R. A. Monserud, “An aggregation al-

gorithm for increasing the efficiency of population models,” Ecological
modelling, vol. 68, no. 3, pp. 257–271, 1993.

[36] S. Wendel and C. Dibble, “Dynamic agent compression.” Journal of
Artificial Societies & Social Simulation, vol. 10, no. 2, 2007, last
access 14/07/2014. [Online]. Available: http://jasss.soc.surrey.ac.uk/10/
2/9.html
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