
Interactive Self-Assembling Agent Ensembles

Samuel Truman and Sebastian von Mammen

Games Engineering, Julius-Maximilians University, Würzburg, Germany
{samuel.truman,sebastian.von.mammen}@uni-wuerzburg.de

Abstract. In this paper, we bridge the gap between procedural con-
tent generation (PCG) and user-generated content (UGC) by proposing
and demonstrating an interactive agent-based model of self-assembling
ensembles that can be directed though user input. We motivate these
efforts by considering the opportunities technology provides to pursue
game designs based on according game design frameworks. We present
three different use cases of the proposed model that emphasize its po-
tential to (1) self-assemble into predefined 3D graphical assets, (2) define
new structures in the context of virtual environments by self-assembling
layers on the surfaces of arbitrary 3D objects, and (3) allow novel struc-
tures to self-assemble only considering the model’s configuration and
no external dependencies. To address the performance restrictions in
computer games, we realized the prototypical model implementation by
means of an efficient entity component system (ECS). We conclude the
paper with an outlook on future steps to further explore novel interactive,
dynamic PCG mechanics and to ensure their efficiency.

Keywords: Procedural Content Generation · User-Generated Content
· Game Mechanics · Agent-based Models · Self-Assembly

1 INTRODUCTION

As an extension to the broadly applied foundation of the MDA framework (me-
chanics, dynamics, aesthetics) on game design [12], the DPE framework (design,
play and experience) emphasizes the technological basis of game design as it
determines the potential design space in terms of user experience, gameplay,
storytelling, and learning in a pedagogical sense, if applicable [22]. The tech-
nological perspective and its tight relationship with game design is especially
obvious in the context of PCG, where various elements of a game immediately
emerge from algorithmic instructions. In particular, PCG has been applied to
small bits of a game such as graphical assets, behavioral descriptions or local
effects, their combination into spaces, most prominently defined through maps,
systems that put bits into relation (also spatially), scenarios that introduce
gameplay challenges, designs that combine various elements into playable expe-
riences, and content which drives the experiences [4]. More recent advances of the
MDA framework and its successors, e.g. the DDE framework (design, dynamics,
experience) [18] shift the focus towards the possible and emerging relationships

author's copy



between the player subject and the antagonist that considers the entirety of de-
signed aspects the player is exposed to. The essence of the DDE framework is,
accordingly, the need to iteratively consider all the different, tightly interwoven
design aspects to arrive at a wholistic design of an interactive experience. The
resulting increase in the frequency of playtests culminates in the idea of PCG
that adapts game design to specific player models in advance or during play, see
e.g. [23,14,8,10].

Different from such adaptive PCG approaches, in this paper we consider
another direction that dynamic PCG can take1. In particular, we demonstrate
how ensembles [5] of agents [2] can implement rather versatile interfaces to inform
dynamic PCG processes. In the following section, we refer to several concepts
that motivated and approaches that we built an exemplary model on, which we
detail in Section 3. We showcase its capabilities and discuss its limitations. We
conclude this paper with a short summary and considerations for future work.

2 RELATED WORK

PCG refers to algorithmically generated content [13], whereas UGC refers to
content that platform users create, a.o. players of virtual worlds [7]. Such binary
distinction quickly fades away when looking at crafting systems which provide
mechanics for players to proactively contribute to the generation of game-related
assets [3]. In [6], a 5-type taxonomy for crafting systems is introduced: type 1
implies that certain resources are traded for items (or upgrades of items) which
could be reduced to the use of currency. Type 2 requires the player to uncover
and follow a specific recipe to yield certain items. Type 3 crafting systems allow
the player to explore the space of possible (pre-defined) recipes by themselves,
whereas type 4 systems allow the player to make several choices which result
in custom items, e.g. by combining different materials. Finally, type 5 are con-
sidered “true” crafting systems in the sense that minute details that the player
determines interact with each other in a complex manner. Type 5 systems chal-
lenge the player in acquiring the knowledge how these interactions play out and
in crafting solutions that meet some given requirements. As type 5 crafting sys-
tems generate outcomes based on computing the interplay of some inputs, they
also qualify as procedural systems, bridging the gap between UGC and PCG, and
potentially elevating “the crafting system to being the primary game mechanic”
[6].

Arbitrary generative models can serve as a basis for systems at the boundary
between UGC and PCG. Individually designed components might, for instance,
self-assemble “into patterns or structures without human intervention” [21]. Sim-
ple models of self-assembly can be implemented by modeling virtual agents [2]
that attract each other and stick together (static self-assembly), yielding higher-
level artifacts. These artifacts may exhibit properties that emerge from the in-

1 We refer to dynamic PCG to particularly highlight the need and capability to pro-
cedurally generate on-the-fly to yield new solutions dynamically as, for instance,
pursued in [24,20,19].



terplay of the self-assembled ensemble of lower-level agents, i.e. that none of
the lower-level agents exhibit by themselves [5]. In this paper, we present an
interactive generative model that implements according self-assembling agent
ensembles. We do not focus on the specific requirements of the user interface
which arise when instructing large numbers of self-organizing agents [16] but
rather on a description of the model and its implementation concept to achieve
real-time performance.

One of the authors previously presented works in which agent ensembles
were evolved and guided to grow three-dimensional structures based on trac-
ing the agents’ trajectories, whereas some agents proliferated to yield branching
structures [9] and others concerted their flight to generate braids [17]. These
approaches featured reactive agents [15] that preform actions based on their per-
ceived environment and internal states. In particular, they extended the original
“boids” flocking model based on neighboring agents’ states [11] in terms of the
aforementioned structural trace and behavioral augmentations. Reactive agents
have also been used to interactively design large biomolecular models [1].

3 MODEL

(a)

(b) (c) (d)

Fig. 1. (a) Agent ensembles that are distributed across
the scene (b) assemble into a shield, and (c) transition
into (d) a sword.

In the preceding sections,
we elaborated about PCG
in the context of game de-
sign and motivated agent-
based PCG mechanics di-
rectly made available to
the player. To further this
concept in the context of
computer games, we im-
plemented a simple agent-
based model that can
implement rules of self-
assembly but can also be
guided by the player sub-
ject or the antagonist (fol-
lowing the terminology of
the DDE framework [18]).
We realized this by agents
(represented as grey cu-
bes) that are stationary
and exhibit ports (semi-
transparent grey cubes)
for other mobile agents
to lock on. In the mobile
state, an agent does not
exhibit ports but seeks



them out within its vicinity to proactively come into port. Agents will move
to their target position in a straight line and are allowed to pass through each
other. Currently, all agents share the same appearance, dimensions and speed.
While several agents may move toward the same port, agents encountering an
occupied port either stop moving or choose an alternative destination. Spatial
conflicts are resolved by automatic offsets to the side.

(b)

(c)

(a) (d)

Fig. 2. The agents lock onto the closest ports
that were randomly generated on the surface.

We implemented three concrete
model instances, each promoting a
different degree of user interaction,
to demonstrate some of the capa-
bilities of our model: Use case 1
shows how the agents can assem-
ble into different assets over time.
Use case 2 shows how the agents
can dynamically occupy a surface.
Use case 3 highlights the agents’ ca-
pacity to self-assemble without the
need for a shape that provides con-
text. At the beginning of each as-
sembly process, the available agents
are randomly distributed within a
well-defined box that is centered at
the origin of the scene. The initial
distribution of agents can have a

major impact on the outcome as their placement determines their locally per-
ceived information. Figure 1 shows use case 1, i.e. how the agents first assemble
into a warrior’s shield and transition into his sword. The shapes’ port informa-
tion is precomputed, whereas the agents’ destinies are computed during runtime,
once the player triggers the assembly of one or the other shape.

Use case 2 is demonstrated in Figure 2. It shows how an assembly instruction
is dynamically applied to the environment without pre-computation: The user
designates an object which triggers the random generation of ports on its surface
and the agents’ embarkment. We consider the relative surface area of each trian-
gle when calculating the probability of its occupation. However, complex meshes
with double-sided faces or inner faces might skew the odds. Figure 3 displays
outcomes of use case 3, i.e. self-assembly without contextual port definitions as
in use cases 1 and 2. Rather, the agents stick together and grow into clusters by
themselves. With a given probability, each agent determines whether to remain
mobile or switch into the stationary state at the beginning of the simulation.
The mobile agents dock onto free ports based on proximity, turn static and open
up new ports themselves. The three examples in Figure 3 have been obtained by
different rule sets that specify port availability.



(a)

(b)

(c)

Fig. 3. (a) Agent ensembles can dock onto free ports without restrictions. (b) Port
generation by stationary agents is restricted to two dimensions. (c) Agent ensembles
can only dock to the most recently generated ports.



In the first example (Figure 3(a)), stationary agents open up ports on each
vacant side and, as a consequence, mobile agents are not limited to grow the
cluster into any direction. In the second example (Figure 3(b)), only ports in the
xy-plane are generated by the stationary agents which limits the growth to flat
platforms. In the third example (Figure 3(c)), mobile agents can only dock onto
ports opened by those agents that docked onto a cluster most recently. All the
ports previously opened by agents that had docked on before, but one random
one, are removed.

Efficiency is a great challenge when considering interactive PCG in the con-
text of games considering the multifaceted intertwined processes that make for
a proper, immersive experience. Therefore, we designed our implementation ac-
cordingly and built it on top of Unity’s Data Oriented Tech Stack (DOTS). It
combines an entity component system (ECS), a job system, and a performant
compiler especially to promote large numbers of interacting entities. Implement-
ing the presented agents as entities, each one is composed of a set of uniquely
identifiable data components, which can be iterated at high speed, especially
due to a systematic avoidance of cache misses.

4 SUMMARY AND FUTURE WORK

We motivated the use of interactive, dynamic PCG as a play mechanic based on
broad perspectives of game design. Based on examples of agent ensembles that
have previously been presented in interactive generative and simulative contexts,
we proposed a model of agent ensembles that self-assemble based on player input.
We demonstrated three according use cases where concrete model instances lead
to self-assembly of different structures constrained by docking rules (use case 3),
to agent coverage of arbitrary surfaces to highlight the flexibility of the model in a
given virtual environment context (use case 2), and to player-triggered dynamic
transformation of the ensemble into different predefined assets. We addressed
the high performance requirements of interactive, dynamic PCG by realizing
our model by means of an efficient ECS system.

In order to push interactive PCG in games, further interactions and espe-
cially their impact on play need to be explored. To this end, small whitebox
prototypes could unearth some new directions where such game elements could
lead. Models, technological realization and game mechanics should be system-
atically embedded into game design frameworks such as MDA, DPE or DDE to
better explore their impact and the space for design opportunities they unfold.
With the first steps of “true” design capabilities of interactive PCG—analogous
to the quote about “true” crafting systems in Section 2—larger cascades and
cycles of interlocking mechanics should be considered at a systematic, abstract
level as well. For instance, based on the model instances presented in this pa-
per, one could investigate the impact of dynamic assets on ecosystems of online
multiplayer platforms that might correlate to actual processing and storage ca-
pacities. Or, as another example, one could investigate the physical impact of



user-created assets in the context of competitive fighting, racing or sports games,
etc.

As mentioned above, the performance requirements are also high, both in
terms of real time capabilities at small scopes of interactive, dynamic PCG or,
if those can be ensured, for scaling up the scope, e.g. the numbers of agents and
their capabilities. To this end, various development challenges can be overcome.
For instance, our implementation could have harnessed the power of the utilized
ECS framework more rigorously by identifying and setting up more jobs that
can be run in parallel or by using ECS during the initialization step or when
novel agents are spawned during runtime. Well-established acceleration algo-
rithms such as spatial data structures could further reduce the number calcula-
tions to determine interactions. The performance impact of structural changes,
i.e. changing an entity’s archetype by adding or removing components, should
be evaluated. In case structural changes are too costly, boolean flags might be
used.

References

1. Davison, T., Samavati, F., Jacob, C.: Lifebrush: Painting interactive agent-based
simulations. In: 2018 International Conference on Cyberworlds (CW). pp. 17–24.
IEEE (2018)

2. Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior
with situation-action-pairs. In: ICMAS. pp. 103–110 (2000)

3. Francis, B.: 7 crafting systems game designers should study. Online at https:

//www.gamasutra.com (July 2015)

4. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content gen-
eration for games: A survey. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM) 9(1), 1–22 (2013)

5. Jun, H., Liu, Z., Reed, G.M., Sanders, J.W.: Ensemble engineering and emer-
gence. In: Software-Intensive Systems and New Computing Paradigms, pp. 162–
178. Springer (2008)

6. King, A.: 5 approaches to crafting systems in games (and where to use them).
Online at https://gamedevelopment.tutsplus.com (January 2015)

7. Lastowka, G.: User-generated content and virtual worlds. Vand. J. Ent. & Tech.
L. 10, 893 (2007)

8. Lopes, R., Hilf, K., Jayapalan, L., Bidarra, R.: Mobile adaptive procedural con-
tent generation. In: Proceedings of the fourth workshop on Procedural Content
Generation in Games (PCG 2013), Chania, Crete, Greece (2013)

9. von Mammen, S., Jacob, C.: Genetic swarm grammar programming: Ecological
breeding like a gardener. In: Srinivasan, D., Wang, L. (eds.) CEC 2007, IEEE
Congress on Evolutionary Computation. pp. 851–858. IEEE Press, Singapore
(2007)

10. Oliveira, S., Magalhães, L.: Adaptive content generation for games. In: 2017 24o

Encontro Português de Computação Gráfica e Interação (EPCGI). pp. 1–8. IEEE
(2017)

11. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21(4), 25–34 (1987)



12. Robin Hunicke, Marc LeBlanc, R.Z.: Mda: A formal approach to game design and
game research. In: Proceedings of the AAAI-04 Workshop on Challenges in Game
AI. pp. 1–5 (2004)

13. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation In Games.
Springer (2014)

14. Shaker, N., Yannakakis, G.N., Togelius, J.: Towards player-driven procedural con-
tent generation. In: Proceedings of the 9th conference on Computing Frontiers. pp.
237–240 (2012)

15. Stuart, R., Peter, N.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River, NJ, 4th edn. (2020)

16. von Mammen, S.: Self-organisation in games, games on self-organisation. In: Games
and Virtual Worlds for Serious Applications (VS-Games), 2016 8th International
Conference on. pp. 1–8. IEEE (2016)

17. Wagner, D., Hofmann, C., Hamann, H., von Mammen, S.: Design and exploration
of braiding swarms in vr. In: Proceedings of the 23rd ACM Symposium on Virtual
Reality Software and Technology. p. 13. Gothenborg, Sweden (November 2017)

18. Walk, W., Görlich, D., Barrett, M.: Design, dynamics, experience (dde): an ad-
vancement of the mda framework for game design. In: Game Dynamics, pp. 27–45.
Springer (2017)

19. Washburn, M., Khosmood, F.: Dynamic procedural music generation from npc at-
tributes. In: International Conference on the Foundations of Digital Games. pp. 1–4
(2020)

20. Wheat, D., Masek, M., Lam, C.P., Hingston, P.: Dynamic difficulty adjustment
in 2d platformers through agent-based procedural level generation. In: 2015 IEEE
International Conference on Systems, Man, and Cybernetics. pp. 2778–2785. IEEE
(2015)

21. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564),
2418–2421 (2002)

22. Winn, B.M.: The design, play, and experience framework. In: Handbook of research
on effective electronic gaming in education, pp. 1010–1024. IGI Global (2009)

23. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation.
IEEE Transactions on Affective Computing 2(3), 147–161 (2011)

24. Zook, A., Riedl, M.: A temporal data-driven player model for dynamic difficulty
adjustment. In: Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. vol. 8 (2012)


