Generating Real-Time Strategy Heightmaps using Cellular
Automata

Peter Ziegler
peter.ziegler@stud-mail.uni-wuerzburg.de
Julius-Maximilians-Universitat
Wiirzburg

ABSTRACT

This paper presents a new approach of heightmap generation for
Real-Time Strategy games (RTS) based on Cellular Automata (CA)
in the context of various established techniques. The proposed ap-
proach uses different CA rulesets to generate and modify maps
for the RTS game Supreme Commander. To evaluate the quality
of the generated maps, a survey was conducted asking 30 partic-
ipants about map quality compared to user-generated maps. The
participants rated the maps more balanced and novel but less aes-
thetically pleasing. The paper concludes with according future work
propositions to improve the presented approach.

CCS CONCEPTS

« Applied computing — Computer games.

KEYWORDS
cellular automaton, procedural generation, real-time strategy

ACM Reference Format:

Peter Ziegler and Sebastian von Mammen. 2020. Generating Real-Time Strat-
egy Heightmaps using Cellular Automata. In International Conference on
the Foundations of Digital Games (FDG °20), September 15-18, 2020, Bugibba,
Malta. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3402942.
3402956

1 INTRODUCTION

Real-Time Strategy (RTS) is a sub-genre of strategy video games.
In RTS games, players control buildings and units which they can
command to generate resources or destroy opponents. Resource
management is important for restoring or constructing buildings
and mobile units, whereas attack and defense are important to re-
duce one’s losses, to expand one’s territorial claims, and eventually
to win the game. The playground terrain often poses an important
game element as it favors or hinders certain movement or building
strategies depending and challenges the players by considering,
e.g. elevations or cliffs, impenetrable rocks or slackening marshes.
Competitive RTS matches are usually fought on one of a small pool
of pre-selected maps. In order to be competitive, players have to
memorize viable strategies for each map in the pool. This results in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FDG °20, September 15-18, 2020, Bugibba, Malta

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8807-8/20/09....$15.00
https://doi.org/10.1145/3402942.3402956

author's copy

Sebastian von Mammen
sebastian.von.mammen@uni-wuerzburg.de
Julius-Maximilians-Universitat
Wiirzburg

good memory to be the players’ most important skill, even though
strategy games are meant to be centered around strategic thinking.
Of course, if no one has ever seen the map, the focus of competitive
play is shifted from memorized strategies to real time strategic
thinking. This can be accomplished by means of procedural genera-
tion of new maps. In this paper we present an according procedural
approach to creating new RTS maps based on CA, exemplary for
the RTS game Supreme Commander.

2 RELATED WORK

Frequently deployed techniques in procedural content generation
of landscapes are fractal Perlin Noise, Midpoint Displacement and
the Diamond Square algorithm [4]. Synthesis based on Perlin Noise,
or Simplex Noise [10], often interpolates between the dot products
of gradient vectors on a grid [9]. Midpoint Displacement [8] intro-
duces and lowers or elevates vertices in a geometric topology to
generate terrains even in real time. As a conceptual extension, the
Diamond Square algorithm [13] elevates the midpoint of a square
to generate realistic 3D terrains. Code libraries as in [6] and [12]
provide fast access to terrain generation techniques as seen in Fig.
1. The displayed heightmaps integrate six height levels and are
smoothed by five iterations of thermal erosion.

Worley Perlin

Simplex
Figure 1: Heightmaps generated with different techniques

Thermal erosion mimics the effects temperature changes and
gravity have on terrain. If a cliff is too steep, material from the top
detaches and deposits at the bottom. This algorithm is generally
faster than other erosion techniques. Thermal erosion makes the
heightmap look smooth and creates rolling hills which can be seen
in Figure 2. Hydraulic erosion mimics the effect of rainfall on terrain.
Simulated raindrops hit the terrain at random positions. They pick
up material and carry it downhill. The material aggregates on the
terrain, where the drops come to a stop. This algorithm is slow
in comparison to other erosion techniques but results in realistic
looking heightmaps which can be seen in Fig. ??.

Burks and von Neumann developed CA for the purpose of mod-
eling self-organized, cellular procreation by means of a large set

https://doi.org/10.1145/3402942.3402956
https://doi.org/10.1145/3402942.3402956
https://doi.org/10.1145/3402942.3402956

FDG ’20, September 15-18, 2020, Bugibba, Malta

5 Iterations

10 Iterations 15 Iterations

Figure 2: Simulating Multiple Iterations of Thermal Ero-
sion

15 Iterations

10 Iterations

5 Iterations

Figure 3: Simulating Multiple Iterations of Hydraulic
Erosion

of according finite state machines [2]. As an according abstraction,
CA organize a large number of cells with discrete states across a
lattice structure that acquire new states based on their and their
neighbors’ previous states. There are two commonly used defi-
nitions for neighborhood on a two-dimensional square grid: The
Moor neighborhood considers all the 8 neighbors encircling a cell,
whereas von Neumann’s original neighborhood definition only
considers the four along its edges. A widely known CA is Con-
way’s Game of Life (GoL), discovered by J. H. Conway in 1970 and
popularized in Martin Gardner’s Scientific American columns. The
GoL is a binary CA, i.e. considering two states for a cell, with a
Moore neighborhood. The GoL’s state transitioning rules consider
the amount of inactive/active neighbors. Using the same setup in
terms of states, neighborhoods and quantitative instead of explicit
rules, [5] present an approach to procedurally generate cave level
maps based on local self-organization. Some of the same authors
also used CA to generate a map representation for the RTS game
Dune II [7]. Yet, to our knowledge, the first represents the only
preceding scientifically published approach to be directly used for
CA-based heightmap generation. There have been numerous re-
lated approaches. Landscape Automata that augment a heightmap
with a quadtree structure to hierarchically introduce changes to
individual pixels and patches of pixels [1]. Texullar is an application
to create textures for large-scale terrains, whereas CA were used to
introduce graphical patterns [11]. Various geological models have
been researched that retrace real world terrain evolution by means
of CA, e.g. [3].

3 CA-BASED TERRAIN GENERATION WITH
CHANGING RULESETS

Most RTS maps integrate distinct terrain types such as water, land,
plateaus. This could be achieved by applying various filters to a
heightmap, but this is slow and leads to results with lots of patterns
and artifacts. It also causes one terrain type, e.g. a plateau, to always
be surrounded by the next lower terrain type, e.g. land. Generally,
creating a large number of viable terrains with distinct features and

Peter Ziegler and Sebastian von Mammen

elevation levels is a challenge. CA can be used to do this efficiently.
In most CA, the rule that determines the next generation never
changes. We propose to apply several different deterministic or
stochastic rules sequentially. In addition to applying an iteration
of a specific CA, we also allow to apply a modification to the grid
structure itself: In our current implementation, the designer may
trigger a subdivision of the whole CA-grid, doubling the resolution
in both dimensions. Each cell is simply subdivided into 2 x 2 new
cells that inherit the predecessor’s state. CA-rules in combination
with additional modifiers enable the designer to define concrete
generative sequences. In order to create different height levels,
multiple CA-grids are stacked on top of each other. As can be seen
in Fig. 4, this technique exhibits some directional artifacts while
generating very unique maps.

(a) CA Grids

(b) Resulting Map Layout

Figure 4: (a) Merging a stack of CA-generated grids (b) yields
a heightmap layout.

Our implementation features a 2D lattice grid with four von
Neumann-neighbors. Missing neighbors at the edge of the grid are
assumed to have the same state as the considered cell. Like in GoL
or Johnson’s cave generation technique, we only consider the total
count of active neighbors. Like in the GoL, we also disregard the
position of the neighbors and just count how many neighbors are
active. This gives us 10 possible states that a cell and its neighbors
might be in. For each of these states, the rule defines whether the cell
will be active or inactive in the following generation. Every possible
rule can therefore be defined by the 10 booleans determining the re-
sulting states. The stochastic rules work like the deterministic ones
but provide a probability for the resulting target cell’s state, instead
of a deterministic boolean value. For example, if the probability
value of a rule is 0.1, there is a 10% chance of the cell being active
and a 90% chance of the cell being inactive in the next generation.
An example of a stochastic rule is given in Fig. 5. This example rule
causes all inactive cells which have one or more active neighbors to
turn on with 50% probability. See Fig. 7 for the outcome of its appli-
cation with intermittent subdivisions, i.e. following the sequence
subdivide — example rule — subdivide — example rule.

state off | off | off | off | off | on | on | on | on | on

neighbors 0 1 2 3 4 0 1 2 3 4

[probability [0 Jo5]05]05[05[1 [1 [1[1]1]

Figure 5: Stochastic rule used by the generator.

Generating Real-Time Strategy Heightmaps using Cellular Automata

state off | off | off | off | off {[on | on |on | on

on

neighbors 0|1]2 |3]4]60 1 2 3

4

FDG ’20, September 15-18, 2020, Bugibba, Malta

see Fig. 6. This rule relies on a parameter p which determines its
impact. Erode is run on the MOUTAIN grid causing some cells

[probability [0 T o o[oo]o[i-p[1[1-p[1 |toturnoff Forevery cellthatis still on, 0.25 will be added to the

Figure 6: Erode rule used by the generator.

Figure 7: Sequential CA-application with intermittent
subdivision modifier to create a CA-grid level.

4 RTS MAP GENERATOR

The map generator is comprised of six components: (1) Layout Gen-
eration, (2) Erosion Simulation, (3) Marker Generation, (4) Detail
Generation, (5) Texturing and (6) Export. The implementation of
these components may vary slightly from game to game but should
always follow the same structure. All components can generate
their output with either point or axis symmetry. This is important
to ensure that no team starts with an advantage. We added the
exemplary configuration for the game Supreme Commander to the
explanations in this section. The layout component generates the
map layout. A predefined sequence of rules yields a grid for each
terrain layer that determines whether a specific terrain feature is
present across the map. These grids are named: SEAFLOOR (blue),
LAND (dark green), LOWPLATEAU (green), HIGHPLATEAU (light
green) and MOUNTAIN (gray). An exemplary generation process
which uses these grids can be seen in Figure 8. Except for moun-
tains which will be introduced in the next step, theses grids will
then be converted into a heightmap. If a cell is activated, the height
of the layer will be added to the heightmap at this position. The
base height of the map is 5.0. The height of SEAFLOOR is 15.0.
The height of LAND, LOWPLATEAU and HIGHPLATEAU is 5.0.
The water height of the map is 22.0 resulting in all points of the
heightmap which are lower than this value to be underwater.

Figure 8: Exemplary heightmap layout generation

To smooth the heightmaps, we run multiple iterations of thermal
erosion which results in height differences of less than approx-
imately 7.0 to become passable terrain. The mountains are now
generated with a special technique that utilizes the "Erode"-rule,

heightmap at this position. This is repeated until all cells are off. The
technique is faster than using hydraulic erosion but the results look
less realistic. Finally, we run a single iteration of thermal erosion.
This concludes the heightmap generation. Markers for the players
starting positions and resources, as well as details such as rocks and
trees are distributed across the map. This is mostly done using sim-
ple constraints such as minimum distance and maximum steepness
of the terrain. All markers are mirrored to ensure map symmetry.
All generated data is then saved in the game’s file format.

Figure 9: Maps Exported for Supreme Commander

5 EVALUATION

To evaluate the performance of our proposed approach, we com-
pared the playability of generated maps and user created maps. To
this end, 30 Supreme Commander players were asked to partici-
pate in a study. Experience of the players was the only criterium
we considered choosing the participants of the study as it is the
sole basis for judging a map’s playability. To ensure that all partic-
ipants are experienced they had to have played over 50 matches
against other players (PvP). In the scope of the experiment, they
played a three versus three match on a generated map. In this game
mode the first team which eliminates all enemy commander units
wins. Every match was supervised using the spectator mode to
ensure that it was finished without issues like disconnects or lag.
If the simulation speed displayed by Supreme Commander (which
is 0 per default but can be reduced to —10) dropped below —2 for
longer than 10 seconds, it was considered lag and the game was
not evaluated. After the game, participants were asked to fill out a
questionnaire. First, players had to confirm that they had played
over 50 PvP games and that the game on the generated map was
finished without issues. They also had to state whether they won
or lost the game. After that, we asked two questions each about
fun, novelty, aesthetics, balance and whether the players wanted to
play these maps in a competitive setting. These questions could be
answered with one of five options on a Likert-scale: Strongly Agree,
Agree, Undecided, Disagree, Strongly Disagree. The answers for
each category are mapped to the interval —2 (favoring user created
maps) to 2 (favoring generated maps).

As can be seen in Figure 10, the fun score is 0.07 with a standard
error of 0.26. Whether the map is generated or user created doesn’t

FDG ’20, September 15-18, 2020, Bugibba, Malta

o
=

e
05 ‘|’

Fun mNovelty Asthetics m Balance

Figure 10: Average Answer Value per Category

1 1
05 i i
Victory Fun Victory Balance
0 0
05 + mDefeat Fun 05 mDefeat Balance
1 1

Figure 11: Fun, Balance vs Outcome

impact how much fun the players have. As can be seen in Figure
11, players who win have considerably more fun than players who
loose. The fun score for winning players is 0.73 with a standard
error of 0.37. The fun score for loosing players is -0.60 with a stan-
dard error of 0.30. The novelty score is 0.45 with a standard error
of 0.25. Many players could use new strategies while playing on
the generated map. The generated terrain often features patterns
which are rarely found on user created maps. Players were able
to invent new strategies which use these terrain features to cre-
ate an advantage. One player (played over 1500 PvP games) wrote
that the map felt "refreshing". The aesthetics score is -0.31 with a
standard error of 0.27. Many players thought that the generated
map looked worse than user created maps. user created maps often
feature hand crafted details which are missing in generated maps.
Also the detailing on generated maps is repetitive and the textur-
ing only depends on the steepness of the terrain and doesn’t add
additional details. The balance score is 0.78 with a standard error of
0.27. Many players perceived the generated maps as more balanced
than user created maps. All generated maps have perfect point or
axis symmetry. Players value this precise symmetry. Players also
wrote that the terrain felt well balanced which allowed them to use
water, land and air units equally. As can be seen in Figure 13, the
Balance rating is not impacted by the outcome of the game. Unlike
fun, which was rated much higher if a player won, balance was
rated equally high by both winning and loosing players. The bal-
ance score for winning players is 0.73 with a standard error of 0.43.
The balance score for loosing players is 0.83 with a standard error
of 0.37. The competitiveness score is 0.21 with a standard error of
0.29. Some players want to play generated maps in ranked matches
against other players. Because the standard error is higher than the
score we can’t assume that a majority of players thinks the same
way. When asked why they don’t want to play the maps in ranked
matches most players wished for aesthetic improvements. However,

mCompetitiveness

Peter Ziegler and Sebastian von Mammen

the correlation between aesthetics and competitiveness is quite low
at 0.25.

6 FUTURE WORK AND CONCLUSION

There are multiple ways in which the proposed map generation
technique could be improved. Different from the proposed CA tech-
nique, rules which consider the Moore neighborhood or an entirely
different neighborhood can be explored. Other neighborhood defi-
nitions could result in performance improvement, simplification of
the map generation process or new cell patterns. Similarly, more
than two possible cell states could enable the map generation to
take place on a single grid. Although this most likely wouldn’t
affect the performance, it may result in new interesting patterns
which consider different layers at once. If the CA was extended to
continuous states, one could work directly on a heightmap. Subdivi-
sion could be extended to allow cells with different sizes to exist on
the same grid, to increase the level of detail only where needed and
thereby, potentially, to much greater magnitude without loosing
more memory. The CA-based approach to heightmap generation
presented in this paper shows that CA can generate terrain features
which are difficult to obtain with other established heightmap gen-
eration techniques. The generated maps feature unique terrain with
compelling and diverse gameplay. They allow players to create new
strategies and can be used as a balanced alternative to user created
maps. Unlimited amounts of maps can be created on demand to
make every match an entirely new challenge. When map genera-
tion is implemented into an RTS game, players are no longer forced
to memorize viable strategies for each map. This shifts the focus
of Real Time Strategy games from memorization to the mastery of
strategic thinking.

REFERENCES

[1] Daniel Ashlock and Cameron McGuinness. 2013. Landscape automata for search
based procedural content generation. In IEEE Conference on Computational In-
teligence in Games (CIG). IEEE, Niagara Falls, ON, Canada, 1-8.

[2] Arthur W Burks and John Von Neumann. 1966. Theory of self-reproducing
automata.

[3] Min Cao, Guo’an Tang, Fang Zhang, and Jianyi Yang. 2013. A cellular automata
model for simulating the evolution of positive-negative terrains in a small loess
watershed. International Journal of Geographical Information Science 27, 7 (2013),
1349-1363.

[4] Jonas Freiknecht and Wolfgang Effelsberg. 2017. A Survey on the Procedural
Generation of Virtual Worlds. Multimodal Technologies and Interaction 1, 4 (2017).
https://doi.org/10.3390/mti1040027

[5] Lawrence Johnson, Georgios N Yannakakis, and Julian Togelius. 2010. Cellular
automata for real-time generation of infinite cave levels. In Proceedings of the
2010 Workshop on Procedural Content Generation in Games. ACM, 1-4.

[6] Martin Kahoun. 2013. Realtime library for procedural generation and rendering of
terrains. Diploma Thesis. Univerzita Karlova.

[7] Tobias Mahlmann, Julian Togelius, and Georgios N Yannakakis. 2012. Spicing
up map generation. In European Conference on the Applications of Evolutionary
Computation. Springer Berlin Heidelberg, Malaga, Spain, 224-233.

[8] Ivo Marak. 1996. Random midpoint displacement method. http://old.cescg.org/
CESCGY7/marak/node3.html. Accessed: 2019-11-13.

[9] Ken Perlin. 1985. An Image Synthesizer. SSGGRAPH Comput. Graph. 19, 3 (July
1985), 287-296. https://doi.org/10.1145/325165.325247

[10] Ken Perlin. 2001. Noise hardware. Real-Time Shading SIGGRAPH Course Notes.

[11] Swapnil Sinvhal. 2007. Mapping textures on 3D Terrains: A hybrid cellular automata
approach. Ph.D. Dissertation. Texas A&M University.

[12] Patricio Gonzalez Vivo and Jen Lowe. Last Accessed: 2019-11-21. Chapter Noise
in The Book of Shaders. https://thebookofshaders.com/11/.

[13] H. Wang, W. Chen, X. Liu, and B. Dong. 2010. An improving algorithm for
generating real sense terrain and parameter analysis based on fractal. In 2010
International Conference on Machine Learning and Cybernetics, Vol. 2. IEEE, 686—
691. https://doi.org/10.1109/ICMLC.2010.5580560

https://doi.org/10.3390/mti1040027
http://old.cescg.org/CESCG97/marak/node3.html
http://old.cescg.org/CESCG97/marak/node3.html
https://doi.org/10.1145/325165.325247
https://thebookofshaders.com/11/
https://doi.org/10.1109/ICMLC.2010.5580560

