
Incorparating the Actor Model into SCIVE on an Abstract Semantic Level
Christian Fröhlich∗

AI and VR Group, Bielefeld University
Marc E. Latoschik†

AI and VR Group, Bielefeld University.

ABSTRACT

This paper illustrates the temporal synchronization and process flow
facilities of a real-time simulation system which is based on the ac-
tor model. The requirements of such systems are compared against
the actor model’s basic features and structures. The paper describes
how a modular architecture benefits from the actor model on the
module level and points out how the actor model enhances paral-
lelism and concurrency even down to the entity level. The actor
idea is incorporated into a novel simulation core for intelligent vir-
tual environments (SCIVE). SCIVE supports well-known and es-
tablished Virtual Reality paradigms like the scene graph metaphor,
field routing concepts etc. In addition, SCIVE provides an explicit
semantic representation of its internals as well as of the specific
virtual environments’ contents. SCIVE uses a knowledge represen-
tation layer (KRL) to tie together the participating modules of a
simulation system and reflects this information between the mod-
ules and processes. As a consequence, the actor model based tem-
poral relations are lifted to the KRL which in turn is implemented
by a real-time tailored semantic net base formalism. The modules’
process flow is henceforth described on the KRL. This high-level
description is extended down to the level of detailed function calls
between the modules. Functions, their parameters, and their return
values are reflected on the KRL. This provides an integrative se-
mantic description and interconnection layer uniformly accessible
a) for the incorporated technical modules and processes as well as
b) for the human designers and developers.

Keywords: Intelligent Virtual Environment, Virtual Reality, Sim-
ulation Core, Ubiquitous Computing, Application Framework.

Index Terms: D.2.11 [Software Engineering]: Software
Architectures— [I.6.7]: Simulation and Modeling—Simulation
Support SystemsEnvironments H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, Aug-
mented, and Virtual Realities I.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods—

1 INTRODUCTION

The development of sophisticated Virtual Reality applications com-
prises complex software engineering tasks. Modeling believable
immersive Virtual Reality environments nowadays requires a va-
riety of modules, such as graphics, physics or haptics, which
contribute to the overall simulation within their own task-specific
boundaries. This is particularly true in the area of intelligent virtual
environments (IVEs) which, e.g., encompasses work on computer
games, ubiquitous computing, or smart graphics. IVEs require di-
verse Artificial Intelligence (AI) methods. AI provides useful–if not
necessary–methods for a variety of aspects in such fields like path
planning, application logic, semantic environment descriptions, or
the simulation of cognitive processes for artificial agents or NPCs
(non-player characters).

∗e-mail: cfroehli@techfak.uni-bielefeld.de
†e-mail:marcl@techfak.uni-bielefeld.de

Since visual perception is very important for generating immer-
sive environments, most VR applications focus on the graphical
simulation output. Tools like OpenGL Performer, Open Inven-
tor [12], Open Scene Graph, OpenSG [11] or the VRML successor
X3D [8] are based upon a hierarchical scene graph structure, which
allows for complex rendering tasks. Extension mechanisms like
field routing or rapid prototyping via scipting interfaces allow for
new customized node types and interconnected application graphs.

Purpose-built VR application frameworks adopt and extend these
mechanisms, by adding in- and output customization, see e.g.
Lightning [4], Avango [13], VR Juggler [3] or the CAVELibTM.
Also network distribution paradigms are often integrated to enable
distributed rendering on a cluster architecture, as can be seen in
Avango [13] or DIVE [5].

Lots of VR applications are designed based upon the useful
scene graph data representation. The applications are built around
the graph structure utilizing it’s benefits like field routing or node
inheritance. This leads to a close coupling between the application
and the utilized framework itself, which inhibits the application’s
portability. As already mentioned, todays VR applications require
the integration of additional simulation modules, like physics or
haptics. Such modules are often integrated on a case by case base
or they are closely coupled to a holistic architecture often found in
game engines like the Doom 3 Engine or the Unreal Engine 3.

Real-time simulation systems benefit from a more modular ap-
proach, at least when it comes to the extensibility and portability of
the framework itself, as well as the developed applications, as seen
in FlowVR [1] or SCIVE [10]. The latter introduces the mecha-
nism of semantic reflection [9], which is inspired by the reflection
paradigm in Object Oriented Programing (OOP). The goal is the
decoupling of simulation content and the simulation system itself.
Semantic reflection enables the mapping of different simulation as-
pects onto a semantic representation–in this case a semantic net-
work. This mapping covers the whole world state of a simulation,
including scene entity represenations, functional definitions, as well
as definitions of participating modules and representations of tem-
poral processes. This results in a complete simulation graph. A
schematic illustration of the semantic reflection concept is shown
in Figure 1.

simulation core logic

specific modules' definitions

scene entities

application design

Figure 1: Mapping of data and object representations from various
simulation applications’ layers to a unified semantic knowledge rep-
resentation, resulting in a simulation graph (graphic taken from [9]).

Semantic modelling in the context of software development and
simulation systems is still in it’s early stages, but has to offer some

promising approaches to recent issues.
Inside a modular architecture the various simulation modules can

be regarded as actors. According to the actor model by Hewitt,
Bishop and Steiger [7] actors are the universal primitives for con-
current digital computation. The actor model was inspired by prior
concepts like the lambda calculus by Church or the programming
language Smalltalk. It has been implemented in a number of pro-
gramming languages (actor languages) since, such as Erlang, Io
or E, and it is the base for more modern languages like Stackless
Python, which is used for example in computer games program-
ming, e.g. EVE Online. Also games using the Unreal Engine 3 use
actors as objects in virtual worlds, even though there is no detailed
information available on this aspect. These previous language im-
plementations of the actor model are not very common in todays
Virtual Reality programming. This is because no explicit binding
between these proprietary languages and the Virtual Reality domain
has been established so far. Therefore we propose a different ap-
proach. We describe the actor model’s principles on a higher level
semantic structure, to be more independent from a specific language
implementation, which does not have the required capabilities for
efficient Virtual Reality development.

The following chapter will give more insights into the actor
model and it’s relevance for modular simulation frameworks.

2 THE ACTOR MODEL AND ITS PARALLELS TO MODULAR
SIMULATION SYSTEMS

In a first step we reflect the actor model’s structure on the level of
the participating simulation modules and their temporal synchro-
nization. It is possible to implement the model on the more detailed
level of the different world entities as well. To implement this, ev-
ery reflected entity, such as data object or functional definitions, has
to be modelled as an actor. This is an approach we will explore in
the near future.

As mentioned above, actors can be seen as the primitives of dig-
ital computation. An actor can reveive messages and respond to
them by making local decisions, creating new actors, send new mes-
sages or determine how to react to the next message it receives.

Looking at modular simulation systems a similar strucutre can
be observed. Every simulation module completes it’s own task in-
side it’s local boundaries. A physics engine for example computes
physical based object behaviour or general forces like gravity or
joints between different objects, while a graphics component only
cares about graphical rendering of a running simulation. So each
actor/module runs it’s own simulation without knowledge of what
the others do. Nontheless every module receives messages and re-
sponds to them in a proper way.

To compare a simulation module to the actor-primitive we have
to take a look at the general features an actor must have according
to the actor model. A module has to be able to:

1. Receive messages from other modules

2. Make local decisions or computations

3. Send messages to other modules

4. Spawn new modules

The following example shows that these features suffice for a
task-specific dedicated simulation module. The goal is the simula-
tion of a physically animated scene with a graphical and accoustic
output and user-interaction using the SCIVE framework.

Figure 2 shows the three independent modules and a central con-
trolling instance, called SCIVE, which includes the knowledge rep-
resentation layer used for the semantic reflection, as well as the
data exchange mechanism between the different modules [6]. Ev-
ery action that is happening in this example can be reduced to the

 : SCIVE

1: calculate

2: create-new-object

3: create-new-object

4: create-new-object

8: spawn-audio-module

 : Physics : Graphics : Interaction

 : Audio

7: increase-update-frequency

6: render

10: audio-initialized

9: initialize-audio

11: play-sound

Figure 2: Illustration of message passing between different modules
in SCIVE.

operations used in the actor model. The modules send messages
to each other in response to received messages or internal events.
They also do local computations or execute local actions indepen-
dently from each other, and the controlling instance is able to spawn
new required modules at runtime (see the audio module).

The actor model itself is inherently concurrent. Messages are be-
ing sent through channels between two actors, whereas most mes-
sages include a continuation, that allows a reply to be sent. Sending
messages happens asynchronous, meaning there is no need for the
sending actor to wait for the receiving one to handle the message,
in other words, it always returns immediately. As soon as the mes-
sage is sent, the sending actor goes on with it’s normal computation.
Incoming messages are stored inside an actor’s buffer, from where
they are handled with respect to absolute fairness, that is, no mes-
sage has to wait indefinitely to be processed. Concurrency is also
an important aspect for real-time simulation systems, since it rep-
resents a significant performance issue. To guarantee a consistent
world state, there must be some order in sending and receiving mes-
sages, as well as in executing concurrent calculations, especially
when it comes to reading and writing shared data objects, e.g. an
object’s position, which is influenced by an user’s interaction, as
well as the calculation of physical laws done by the physics sim-
ulation engine. The next chapter will elucidate how this issue can
be handled on a semantic level using SCIVE’s semantic network
as central knowledge representation layer in conjunction with the
concept of semantic reflection.

3 MODELLING FUNCTIONS AND TEMPORAL PROCESSES ON
A SEMANTIC LEVEL

Temporal relations have been explored in depth by Allen [2]. He
defined 13 temporal interval primitives, that can easily be mapped
onto a semantic network. To be able to do this, first of all the ac-

tions taking place inside the simulation have to be reflected on the
network. The actions can consist of message passing between the
actors/modules or for example function calls executed by a specific
actor. Figure 3 shows some C++ function call definitions modelled
on the functional extendable semantic network used in SCIVE.

Figure 3: Semantic reflection of a C++ function call on a semantic
network

The function calls are modelled by means of inheritance, derived
from a basic c function concept through the is a relation. It is possi-
ble to model function calls without parameters, like the returnTrue
or returnFalse functions, or with parameters, such as the loadOb-
ject definition. A function can also have more than one parameter
because it is possible to sort the parameter nodes by assigning a
number to a specific slot inside the node, so the function call knows
in which order the parameters have to be used. The function itself
is called at runtime by small specialized traverser programs, which
traverse the network in search of specific node or relation types.
When a function traverser has found it’s desired target, it constructs
the function call by traversing the relations connected to the func-
tion node to get it’s parameters and return value. The constructed
call is executed with the help of the libffi (foreign function inter-
face), which is included with the gcc-distribution. The uses library
relation indicates which shared object the traverser has to open to
execute the call.

To model temporal processes by means of semantic reflection we
use Allen’s temporal interval primitives as relations between certain
actions. Let’s assume we have two actions X and Y. Allen defined
his 13 primitives as follows:

1. before: X takes place before Y

2. meets: X meets Y (Y starts with the end of X)

3. overlaps: X overlaps Y (Y starts while X is still in execution)

4. starts with: X starts with Y (X and Y start at the same time,
while X finishes first)

5. during: X during Y (X takes place, while Y is in execution)

6. finishes with: X finishes with Y (X and Y finish at the same
time)

7. equal: X is equal to Y (X and Y start and end at the same
time)

Items 1 to 6 are considered to be bidirectional, which leads to
13 primitves instead of the listed seven. These 13 relations can
be very useful when it comes to modelling temporal sequences on
the semantic level. Figure 4 shows an example of how temporal
processes are modelled in SCIVE.

Figure 4: Temporal sequences of actions taking place in SCIVE using
semantic reflection

Two sequences of the type temporal sequence, which is derived
from the general type temporal process, are instanciated. These
sequences initialize the calculation of the simulation modules on
the one hand, and on the other hand the synchronization of their
results. After the initialization of the calculation sequence the var-
ious modules start their concurrent computation loops. When fin-
ished, the finish calculation sequence function is called and the se-
quence gets finalized. The two sequences are interconnected via
a meets relation, meaning the synchronization sequence starts with
the end of the calculations. In this case the synchronization of data

happens not concurrently, because the nodes are connected through
the meets relation, which requires the source action to be finished,
before the target function can be called. The relations between the
nodes determine how the sequence is executed by the network tra-
versers. The sequences can be changed at runtime by changing the
network’s topology via a scripting interface in Scheme (the inter-
face is generated via swig, so other languages are also possible), or
by the actions themselves.

4 CONCLUSION

Incorporating the actor model into the development of real-time
interactive Virtual Reality simulation systems is a powerful and
promising approach. Mapping the model onto a higher level seman-
tic structure offers several advantages to prior proprietary program-
ming language implementations. The semantic mapping strongly
reduces dependencies to a specific implementation language. Pro-
cess flow and temporal relations used to be tightly bound to the
specific simulation engines. For example, the logic behind data
flow processes used in field graph approaches is usually not avail-
able to application designers. Changes to such internal processes
was—if possible at all—only available on a low-level base and re-
quired a deep understanding of the simulation engines’ internals.
In contrast, a semantic modelling as described here provides this
low-level knowledge even to high-level designers.

An actor’s interface is simple–viewed from the technical point
of view. Every actor needs a message passing interface to commu-
nicate with other actors. This interface contains the complex event
processing logic, which is similar to the event processing in Ser-
vice Orientated Architectures (SOA). The handling of this complex
event logic is subject to the modelling on the semantic level, using
SCIVE’s KRL.

The use of Allen’s temporal interval relations has proven to be
sufficient and reasonable. The 13 primitves map naturaly onto a se-
mantic network, using the actions as nodes and the temporal inter-
val definitions as relations between them. They provide an adequate
and on the other hand simple description metaphor for all actions
required in typical simulations. On the other hand, the decomposi-
tion of semantic descriptions on the KRL and specialized traversers
for their interpretation guarantees portability and extensibility, e.g.,
new temporal primitives and their traversers can be added later on
if needed.

Outlook As a next step we will explore the implementation of
the actor model as the base for world entity definitions and interac-
tions between entities. This means, every entity must have the capa-
bility to send, receive and process messages. On this fine-grained
level, the actor model will simplify the communication between
different entities. Futhermore this will enable entities to perform
concurrent actions and enhance the secure concurrency of the over-
all simulation. The idea of a semantic model as an engineering
paradigm is currently explored in several directions, temporal re-
lations and process flow being only one aspect where it proved to
be very promising. In general, our goal is to reflect any simula-
tion aspect on a knowledge level to provide a new paradigm in the
development of complex intelligent interactive systems.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,
and S. Robert. Flowvr: a middleware for large scale virtual reality
applications. In Proceedings of Euro-par 2004, Pisa, Italia, August
2004.

[2] J. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26(11):832–843, November 1983.

[3] A. D. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira. VR Juggler: A Virtual Platform for Virtual Reality Ap-
plication Development virtual platform for virtual reality application

development. In IEEE Virtual Reality 2001 conference proceedings,
pages 89–96, Yokohama, Japan, 2001. IEEE Press.

[4] R. Blach, J. Landauer, A. Rsch, and A. Simon. A Highly Flexible Vir-
tual Reality System. In Future Generation Computer Systems Special
Issue on Virtual Environments. Elsevier Amsterdam, 1998.

[5] O. Hagsand. Interactive MultiUser VEs in the DIVE system. IEEE
Multimedia Magazine, 3(1), 1996.

[6] G. Heumer, M. Schilling, and M. E. Latoschik. Automatic data ex-
change and synchronization for knowledge-based intelligent virtual
environments. In Proceedings of the IEEE VR2005, pages 43–50,
Bonn, Germany, 2005.

[7] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor for-
malism for artificial intelligence. In IJCAI, pages 235–245, 1973.

[8] ISO/IEC, JTC 1/SC 24. X3d abstract. Technical Report 19775-1:2004,
ISO/IEC, 2004.

[9] M. E. Latoschik and C. Fröhlich. Towards intelligent VR: Multi-
layered semantic reflection for Intelligent Virtual Environments. In
Proceedings of the Graphics and Applications GRAPP 2007, pages
249–259, Barcelona, Spain, 2007.

[10] M. E. Latoschik, C. Fröhlich, and A. Wendler. Scene Synchronization
in Close Coupled World Representations using SCIVE. The Interna-
tional Journal of Virtual Reality, 5(3):47–52, 2006.

[11] D. Reiners, G. Voß, and J. Behr. OpenSG: Basic
Concepts. www.opensg.org/OpenSGPLUS/symposium/-
Papers2002/Reiners Basics.pdf, february 2002.

[12] P. S. Strauss and R. Carey. An object-oriented 3D graphics toolkit.
In Computer Graphics, volume 26 of SIGGRAPH Proceedings, pages
341–349, 1992.

[13] H. Tramberend. A distributed virtual reality framework. In IEEE
Virtual Reality Conference, pages 14–21, 1999.

