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Abstract. This article describes the integration of knowledge based techniques 
into simulative Virtual Reality (VR) applications. The approach is motivated 
using multimodal Virtual Construction as an example domain. An abstract 
Knowledge Representation Layer (KRL) is proposed which is expressive 
enough to define all necessary data for diverse simulation tasks and which 
additionally provides a base formalism for the integration of Artificial 
Intelligence (AI) representations. The KRL supports two different 
implementation methods. The first method uses XSLT processing to transform 
the external KRL format into the representation formats of the diverse target 
systems. The second method implements the KRL using a functionally 
extendable semantic network. The semantic net library is tailored for real time 
simulation systems where it interconnects the required simulation modules and 
establishes access to the knowledge representations inside the simulation loop. 
The KRL promotes a novel object model for simulated objects called Semantic 
Entities which provides a uniform access to the KRL and which allows 
extensive system modularization. The KRL approach is demonstrated in two 
simulation areas. First, a generalized scene graph representation is presented 
which introduces an abstract definition and implementation of geometric node 
interrelations. It supports scene and application structures which can not be 
expressed using common scene hierarchies or field route concepts. Second, the 
KRL’s expressiveness is demonstrated in the design of multimodal interactions. 
Here, the KRL defines the knowledge particularly required during the semantic 
analysis of multimodal user utterances. 

1   Introduction 

VR tools have historically been built around the graphics system as the major 
simulation module. Nowadays, they additionally support the VR design process with 
a variety of features. These include support for application or behavior graphs via 
field-routing, input and output device abstraction, networking as well as scripting 
capabilities. Specifically required features, like a thorough or approximated physical 
simulation or gesture and speech processing for novel—multimodal—interaction 
methods (see Fig 1), have to be integrated using the extension methods provided by 
the VR and simulation tools utilized. Here, a promising research direction strives for a 
conceptual combination of VR and AI related methods to support the design of 
Intelligent Virtual Environments (IVEs) (Luck & Aylett, 2000). 
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Fig. 1. Multimodal interaction in knowledge supported construction tasks. Left: A user selects a 
wheel and connects it to a complex chassis (“Take [pointing gesture] this wheel and connect it 
there…”) (Latoschik, 2001). Middle: The user and the artificial communication partner MAX 
agree on the referenced part on the table (Kopp et al., 2003). Right: The user scales a 
previously connected part which keeps its attributes, here the wheel’s roundness (Biermann & 
Jung, 2004). 

AI and VR concepts have been combined in a variety of research projects using 
customized and application specific integration methods. In the last few years, several 
approaches have aimed at a more general way of a conceptual and technical 
integration of AI techniques into simulation based systems (Cavazza & Palmer, 2000; 
Luck & Aylett, 2000; Peters & Shrobe, 2003; Soto & Allongue, 2002). An integration 
based on a common representation layer as proposed in (Cavazza & Palmer, 2000) 
offers several advantages regarding adaptability and reusability. Its content can be 
made persistent using an external file format where AI, graphics, physics and other 
simulation related content are coequally expressed in a common format. 

A fundamental integration of AI and VR provides the potential for a wide range of 
possible applications including heuristic approximations of—e.g., physical—
simulation features and advanced multimodal interaction setups. For example, we 
have enriched our VEs with multimodal instruction type interactions as well as with a 
humanoid communication partner called MAX (Kopp et al., 2003). Here, lexical and 
semantic content about the simulated scene is mandatory during both, the analysis of 
the user’s and the generation of Max’s multimodal utterances.  

1.1   Knowledge Representation in VR 

This article presents a unified and comprehensive method of knowledge integration 
and access in VR-based simulation systems. This method will be illustrated in two 
example areas: knowledge supported virtual construction and multimodal interaction. 
On shallow examination the two areas seem to differ significantly. In a closer 
examination, we will illustrate how necessary generalizations made from both, the 
example applications’ data representations, as well as from the VR-simulation 
specific data representations lead to a common knowledge layer capable of a high-
level description of advanced simulation features.  

We start by introducing the used terminology and by a closer analysis of the built-
in semantics of existing representations of generic VR-simulation system. From a 
knowledge based view, objects and structures of a simulation system can be defined 
by entities, attributes, relations, and concepts. 
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Entities represent simulated objects. Attributes describe certain feature-value pairs 
of entity representations. For example, simple well known attributes for the graphics 
part are (RGBA) diffuse colors of the utilized lighting model or 9 float values for 
transformation specification as illustrated in the upcoming Fig. 2 and Fig. 3 by the 
9DOF nodes. Each of these nodes carries 9 floats which are associated to a given 
entity, e.g., 2_hole_rod or hole1 in Fig. 2, to specify its transformation. All atomic 
data about entity features are eventually described as attributes, from simple color 
values, diameters of holes, entity masses up to functional features attributes like is-
scalable or is-connectable. 

Relations generally describe n-ary predicates of attributes, entities and concepts. 
Concepts represent categories, semantic circumscriptions of objects and attributes of 
the regarded target domain as illustrated in Fig. 2 and Fig. 4 for the base node of the 
2_hole_rod entity which instantiates a ROD concept. Concepts are attribute and 
entity descriptions, patterns or classes. A typical known relation of scene graph 
systems is the part_of relation that defines the scene hierarchy and grouping 
behavior. 

With respect to the example domain, the term part denotes non-decomposable but 
modifiable entities used in the construction process. Parts consist of sub-parts which 
relate to semantically self-contained sections of parts. A sub-part is defined (1) by its 
position relative to a part’s frame of reference and (2) by a set of sub-part specific 
attributes which describe the sub-part’s type. Sub-parts can not be instantiated without 
a part to which they are bound conceptually– they can not be deconstructed during 
user interaction.  

1.2   Built-In Semantics of VR-Simulation Systems 

The semantics of attributes and relations commonly used in simulation systems is 
defined procedurally. The interpretation of attributes and relations is defined by the 
underlying technical processes of the simulation modules. For example, color-
attribute values are used to calculate pixel-shadings with respect to utilized lighting 
model, and part_of scene graph relations define the accumulative multiplication of 
matrices on the matrix stack. This operational and fixed semantics limits the 
representations available to the predefined rendering tasks and complicates or even 
inhibits their utilization for different application specific representations. The 
expressiveness of the scene graph related part_of relation as well as those of 
application graphs built from field route connections is strictly defined by the 
procedural semantics of the simulation system.  

As a consequence, additional representations are necessary for reasonably complex 
applications since the existing features of the simulation engines are not expressive 
enough. This often results in purpose-built solutions which lose the declarative 
expressiveness, the reusability as well as the flexibility of the representation methods 
provided by the simulation engines. For example, a common solution in field route 
based systems is to define new node types which receive certain data and manipulate 
this data using specialized algorithms. Most VR-based simulation systems include 
methods for such extensions, e.g., VRML (Carey et al., 1997) supports this approach 
using the built-in PROTO feature. 
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In the worst case, none of the built-in extension features are expressive and 
powerful enough for some applications. In that case, external modules are often 
loosely coupled to the simulation system and data is exchanged between them using 
standard interprocess communication (IPC) facilities. This in turn requires special 
purpose external synchronization and data-replication which complicates application 
development significantly or even prevents expandability and reusability of systems’ 
components. Furthermore, in certain areas a loose coupling can in fact be insufficient. 
For example, continuous user interaction, e.g., dragging of an object, usually requires 
a high responsiveness which can not be guaranteed at all times using loose coupling 
without concurrently using IPC blocking behavior. 

2   Simulation Knowledge Representation Layer  

Our goal is a common Knowledge Representation Layer (KRL) which contains VR-
simulation specific as well as application tailored knowledge. The subsequent 
explanations presuppose a simulation system which at least provides scene and 
behavior graph structures as for instance offered by the AVANGO toolkit 
(Tramberend, 1999). Hence, relations defined in the knowledge layer first of all have 
to represent the target system’s representational features, and similar steps are 
necessary for other target systems. 

Fig. 2. Knowledge representation of an example part (a rod with two holes, see upper right) 
which supports intelligent scaling operations 

sg_part_of (scene graph parent/child): Transitive directed relation denoting 
grouping behavior of scene graph nodes. Implies accumulative multiplication of 
existent matrix attributes found at nodes followed in the given relation direction. 

fr_connect_to (field route connection): Transitive directed relation denoting 
value propagation of attributes in the given relation direction. 

f_control_to  (field reference): Directed relation denoting referential (not routed) 
read/write access to fields of target nodes by specialized source nodes.  
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Additional relations are defined to express the application specific knowledge. The 
following relations and their semantics support virtual construction tasks that group 
parts to aggregates and specify geometric dependencies between (sub-)parts: 

 
is_sub_part: Transitive directed relation denoting the association of a sub-part to 

a part.  
is_a: Transitive directed relation denoting a subsumption hierarchy for part 

concepts. is_a implies inheritance behavior of certain attributes, e.g., lexical 
information, of parent concepts. 

has_FOR: Directed relation denoting the association of a frame of reference 
(FOR) to a given concept, e.g., a part or a sub-part. 

9DOF_dependency: Transitive directed relation denoting a geometric 
dependency between two 9DOFs (9 Degrees of Freedom) as parameterized by a 
9DOF_dep_mat concept which defines the dependencies (see following sections). 

9DOF_relative_to: Transitive directed relation denoting the relative position, 
orientation, and scaling of a 9DOF with respect to a given 9DOF frame of reference. 

 
Fig. 2 illustrates a segment of the resulting knowledge structure which supports 

intelligent scaling operations for a rod with two holes as sub-parts which are defined 
to behave independently during a scaling operation of the main part, e.g., to maintain 
the holes’ roundness during scaling operations. All parts and sub-parts have 
associated 9DOF frames of reference which define their position, orientation and 
scaling using the has_FOR relation. This ensures that grouping and transformation 
are expressed independently from each other. The sub-parts’ FORs are defined to be 
relative to the main part’s FOR via a dependent mapping defined by the 
9DOF_dependency which parameterizes the 9DOF_relative_to relation using the 
9DOF_dep_mats.  

The semantics of this representation is as follows: The 3x3 dependency matrix of a 
9DOF_dep_mat defines how the factors for position (first matrix row entries), 
rotation (second row) and scaling (third row) are concatenated following the algebraic 
semantics of the 9DOF_relative_to relation. In its plain assertion between two 
FORs, the 9DOF_relative_to defines well known multiplication of homogenous 
coordinate representations which would express common scene-graph behavior. In 
contrast, the chosen representation allows an extensive parameterization of the 
concatenation type of two linked FORs. Fig. 3 illustrates how arbitrary 

Fig. 3. Parameterized coupling of attribute values which are calculated according to the 
algebraic rule as defined by the embracing relation, here the 9DOF_absolute_to relation 
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parameters—constant values as well as functions—can be defined to modulate the 
algebraic effect or calculation rule of the active relation which couples two attributes.  

The free interconnection of attributes even allows coupling between different 
geometric attributes or DOFs e.g., to have one part to rotate if another part translates 
or to match one part’s scaling by a rotation of two other parts if two dependency 
matrices are used. 

The two zeroes in the last row of the left and the middle 9DOF_dep_mat in Fig. 
2. represent a missing p_coupled relation and hence define partial blocking of the  
9DOF_relative_to semantics which defines a parent-child relation between the main 
part and the holes. This suppresses the consecutive impact of parent part’s total 
scaling and only scales hole1 in the z- and hole2 in the y-direction (the principal axes 
of the holes’ main directions).  

3   Interaction Knowledge Representation Layer  

The KRL is not limited to the representation of geometric dependencies as motivated 
for the virtual construction task. Its overall goal is to support application specific 
representation models as well as commonly required VR-related modeling tasks. This 
includes high level representations of entity data and structures for the variety of 
involved software modules, e.g., for the graphics, physics and the interaction 
components. 

The idea of a semantic representation is in fact strongly inspired by the intention to 
utilize multimodal—gesture and speech driven—interactions in VEs. Processing of 
multimodal utterances can be roughly divided into several phases: Speech and gesture 
detection, semantic speech and gesture analysis, multimodal integration and 
pragmatic analysis. During processing, several of these phases frequently access 
semantic content from redundant data representations of other simulation modules. 
Here, a unified KRL partly solves the multiple database problem.  

A major design goal for the knowledge representation layer is to support 
semantics, necessary during interaction. This includes, e.g., mappings between 
conceptual and lexical data for a variety of concepts and attributes. These concepts do 
not only represent perceivable entities and their features in the artificial world but also 
abstract concepts, e.g., holes in a part or actions a user can carry out. 

The necessity for the representation of semantics is evident for the semantic 
analysis phase which has to map lexical and gestural expressions to conceptual 
knowledge. Fig. 4 presents another view into the semantic network which represents 
the example two-holed rod. The grey nodes illustrate instantiation of a two-holed rod. 
The conceptual definition of a two-holed rod (grey rectangular nodes) is used as a 
template for the actual instance (grey oval nodes). Instances represent the existing 
entities of the simulation. Their inheritance of concepts and attributes as defined by 
their conceptual templates is customizable. If they are not inherited during 
instantiation, their inheritance behavior is defined per relation following the 
connecting relations (here inst_of and is_a). Specialized negating relations (pattern 
<x>not_<y>, e.g., hasnot_feature) provide a method to locally override the default 
inheritance behavior. 
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Fig. 4. Conceptual and lexical knowledge representation of the two-holed rod 

Fig. 4 illustrates the interconnection between entity features which define certain 
simulation behavior, e.g., whether an entity is scalable, and the representation of the 
according user action by the SCALE, CONNECT and ACTION concepts. These 
interaction concepts further define their required conceptual knowledge to be fulfilled, 
e.g., a required target or a required interaction parameter. Where linguistic knowledge 
is given by linking concepts to lexical counterparts, the semantic analysis processing 
module is automatically enabled to map lexical information to conceptual knowledge 
which then can be instantiated during the processing. 

For example, a connection of the screw and the two-holed rod in the virtual 
construction task can be accomplished in two ways. The direct manipulation way is to 
drag the screw. When the screw collides with the rod, the best fitting ports (here the 
holes) are heuristically determined and appropriate modules will be activated to 
simulate the connection (see subsequent sections).The second way is by using 
multimodal interaction, e.g., by saying: “Put [pointing gesture] that screw in [pointing 
gesture] this hole.” (see, e.g., Fig. 1. left). Focusing on the linguistic part, input is 
analyzed by mapping the incoming words to the lexicon which is defined by the target 
concepts of the has_lex relation in Fig. 4. By backward traversing these relations 
during the parse process (Latoschik, 2002), the matching base concepts are retrieved 
from the KRL.  

The conceptual knowledge is now used according to its semantics. For example, 
verbs found in imperative speech such as “Give me a…”will be looked up in the 
lexicon. Traversing the has_lex relation will retrieve the respective concept. If this 
concept is then identified as an ACTION, e.g., by traversing the type hierarchy, 
matching interaction frames will be retrieved and instantiated which define required 
interaction information, e.g., the required target OBJECT instance(s). In addition to 
the illustration in Fig. 4, the actual existing knowledge base decomposes OBJECT 
concepts into their substructures, relates them to the two existing type hierarchies, and 
augments the linguistic structures with syntactic information. 
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These interaction frames, their concepts and attributes, are used as templates which 
are filled during input processing. For example, if the template requires one or more 
objects, the parse process will feed a reference resolving engine with the conceptual 
information necessary to identify one or more target entities (Pfeiffer & Latoschik, 
2004). Since the KRL interconnects instances with the data representations of other 
simulation modules, this data, e.g., a quantitative RGBA value for a color attribute 
will be processed in the same way. Finally, completed interaction frames trigger the 
desired interaction. 

4   Implementing and Applying the KRL 

To implement the KRL, a knowledge representation tool, FESN (Functionally 
Extendable Semantic Network) (Latoschik & Schilling, 2003), has been developed. 
The FESN offers a specialized and adaptable semantic net formalism which is 
implemented as a C++ library and which has special features targeted at its utilization 
in VR simulation systems and for diverse application specific representation tasks. 

Attribute augmentation of concepts: FESN nodes can carry additional attributes 
and values which allows a seamless transformation of a target system’s 
representations into the FESN.  

Functional extensibility: Flexible relation semantic. New relation types can be added 
easily. The semantics of relations is expressed by functions added to the relations. 

Built-In event system: Changes of attribute values and the network’s structure are 
monitored to enable automatic processing of changes submitted by simulation 
modules. 

Built-In event filter: Concepts (nodes) of the FESN can be associated with multiple 
external attribute sources of the same attribute. A parameterized filter concept allows 
automatic evaluation and selection of concurrent—possibly conflicting—value 
changes.  

External XML representation: The FESN supports SNIL, the Semantic Net 
Interchange Language, as an XML based external representation. This provides a 
convenient way to define and modify knowledge layer content (see Fig. 5).  

Furthermore, the low level implementation of the FESN as a C++ library allows 
several performance optimizations which conserve processing resources in contrast to 
commonly found high-level (e.g. PROLOG or LISP based) semantic net realizations. 
This is particularly important for the FESN’s utilization in interactive real-time 
simulations.  

Using the FESN as the base formalism, the KRL completely defines all data and 
knowledge required by a simulation system in a unified representation, including 
graphics, physics, audio or even AI and interaction content. The KRL’s content is 
applied to simulation systems in two ways. The first, uncoupled, method transforms 
knowledge bases defined by SNIL into representations compatible with the simulation 
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modules of the target system. Several of these modules support external 
representations. Some of them support proprietary XML based formats, e.g., we have 
previously developed an XML based format for a simulation module which handles 
variant parts: VPML (Variant Part Markup Language) (Biermann & Jung, 2004). The 
required mapping between source and target representation is conveniently achieved 
via XSLT processing where the mapping rules only have to be statically defined once. 

In contrast to the uncoupled method, the coupled method embeds the FESN as a 
separate module directly into the simulation system’s process space and latches 
knowledge access into the simulation loop(s) of all simulation modules which share 
this process space. In such setups, the FESN acts as a central knowledge base and 
monitoring instance. Its event system provides a method to control and filter value 
changes of attributes which might be proposed by several modules concurrently, e.g., 
for the 9DOF attribute.  

4.1   Semantic Entities 

The coupled method provides two ways of knowledge access: First, arbitrary FESN 
queries can be directly called on semantic net structures which are mapped into the 
process space of the calling modules. Second, modules can use an object centered 
KRL-access to dedicated entities in their own proprietary object representation. In 
effect, each of the simulation module specific entities has a corresponding counterpart 
represented in the KRL. By augmenting the module specific entity representation with 
an FESN-interface—for example, using object oriented multiple inheritance 
schemes—the entities’ semantic data is directly accessible by the given simulation 
module. This architecture leads to a novel object or entity model we call Semantic 
Entities. Semantic Entities link proprietary entity representations with the 
correspondent instances of the knowledge layer and provide a standardized way of 
accessing the KRL. 

The uniform KRL-access via Semantic Entities allows for an increased and 
powerful modularization of simulation systems. Typical architectures for 
implementing some specific functionality for a given simulation utilize so-called 
engines. Engines are dedicated modules in scene graph based systems which 
implement a certain function and which apply their results by accessing target nodes 
and attributes directly or by propagating attribute changes using a behavior graph. 
Here, target nodes and attribute-routes have to be specified by the application 
programmer specifically, be it for a simple interpolator engine or for an advanced 
collision and dynamics engine. Using Semantic Entities, information about object 
animation and manipulation specification is conveniently defined declaratively using 
the KRL. By querying the KRL via the Semantic Entities in the engines’ or modules’ 
process space, requested object features, like if an object is movable, or collidable, or 
any other feature a specific engine requires, can directly be accessed.  

For example, we have developed several components for multimodal interaction 
which completely rely on Semantic Entity access. Dedicated engines preselect and 
sort possible targets’ Semantic Entities in the scene representation according to users’ 
gestures like view and pointing direction. This set of possible targets is then further 
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restricted to objects which satisfy the semantic interpretation of type or attribute 
specifications, e.g., during the processing of definite noun phrases like “…the blue 
rod…”: A KRL retrieval for the word “…rod…” will find the ROD concept by 
following its has_lex relation in Fig. 4. This result will restrict the preselected set of 
Semantic Entities to entities of the required type, e.g., to include the 2hr_12 instance 
in Fig. 4 which is of type ROD following the transitive inst_of and is_a relation. The 
semantic interpretation engine uses Semantic Entities for object centered KRL access 
to map the utterance’s meaning to the semantic scene description which includes 
representations of the user and possible interaction partners as in Fig. 1.Other 
components evaluate the construction specific knowledge of entities and 
automatically instantiate required simulation modules which implement a given entity 
feature as will be explained in the following sections. 

The Semantic Entity object model greatly simplifies the development of Virtual 
Environments. It promotes modularization, easy adjustment, and reuse of simulation 
components. Components access specific entity features via Semantic Entities. 
Additionally, the components themselves can be represented in the KRL to provide an 
automatic mutual matching of tools and target objects since they share the same 
representation.  

4.2   Mapping Knowledge to Target Systems 

Besides KRL-access, both knowledge application methods have to map the FESN 
representations to a target system’s internal representation. This mapping transforms 
the modeled knowledge into structures readable and interpretable by the respective 
simulation modules. For the example two-holed rod, the knowledge fragment that 
defines the geometric dependency of hole1 (see Fig. 2. ) is illustrated in Fig. 5 using 
the SNIL notation.  

Our current AVANGO-based target system supports a scene graph metaphor with 
a field route concept and allows implementation of new proprietary node types. This 
justifies grouping of sub-parts as children of the main part. But this maps the 
modulated 9DOF_relative_to relations to fixed sg_part_of relations. To overcome 
the fixed scene graph semantics, a new node type called Constraint Mediator (CM) 
was developed which is parameterized by a dependency matrix for constraint 
definition. Instead of Geometric Constraint Solvers as in (Fernando et al., 2001), 
which solve the constraints in an external system, the CMs in our target system 
implement the defined geometric dependencies as constraint nodes in the scene graph 
and apply them directly to the 4x4 transformation matrices. In other possible target 
systems, like VRML97, these constraints could be realized by using Script-Nodes, 
whereas the implementation of the scripting interface in VRML is often very slow 
(Diehl & Keller, 2002). 

The CM nodes can monitor several fields to restrict and propagate their values. 
Unlike normal field connections (e,g, the field routes in VRML), CMs can propagate 
field-values in both directions and can alter the values while propagating, to establish 
complex constraints directly in the scene graph. These constraints implement the 
geometric dependencies of the knowledge based simulation as defined by the 
knowledge layer in the target system.  
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<semantic-net> 
 <node name="2_hole_rod" type="Default"/> 
 <node name="9DOF_2_hole_rod" type="Default"> 
   <slot name="FOR" type="9DimVect" 
  inheritanceType="Attribute"  
  value="0 0 0 0 0 0 1 1 1"/> 
 </node> 
     ... 
 <node name="hole1" type="Default"/> 
 <relation typeName="is_sub_part"> 
   <start-node nodeName="hole1"/> 
   <end-node nodeName="2_hole_rod"/> 
 </relation> 
 <node name="9DOF_hole1" type="Default"> 
   <slot name="FOR" type="9DimVect" 
 inheritanceType="Attribute"  
 value="-.2 0 0 0 0 0 0 1 1 1"/> 
 </node> 
 <relation typeName="has_FOR"> 
   <start-node nodeName="hole1"/> 
   <end-node nodeName="9DOF_hole1"/> 
 </relation> 
 <node name="9DOF_dep_mat_hole1" type="Default"> 
   <slot name="FOR" type="81DimMat” 
 inheritanceType="Attribute"  
 value="  … (9x6 identity)1 
   0 0 0 0 0 0 0 0 0 
   0 0 0 0 0 0 0 0 0 
   0 0 0 0 0 0 0 0 1"/> 
 </node> 
 <relation typeName="9DOF_relative_to"> 
   <start-node nodeName="9DOF_dep_mat_hole1"/> 
   <end-node nodeName="9DOF_2_hole_rod"/> 
 </relation> 
     ... 
</semantic-net> 

Fig. 5. SNIL fragment that partly describes the two-holed rod example. The extended 
dependency matrix that defines hole1’s dependent scaling is defined as an attribute of the 
9DOF_dep_mat_hole1 concept. 

4.2.1   Inter-Part Constraints (Scaling / Transformations) 
One application area for the dependency matrices is the simulation of building parts 
and sub-parts, which can have complex scaling behavior, depending on the scaling of 
their parent parts. Fig. 6 shows an example of a scene graph section with CMs which 
prevent the deformation of the holes when scaling the rod. When the user scales the 
rod in the X- or Y-direction, the two upper CMs in Fig. 6 set the adjust-scaling of the 

                                                           
1 Only the lower three matrix rows which are relevant for scaling dependencies are depicted for 

readability. 
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holes to the inverse of the scaling of these directions to maintain the size and 
roundness of the holes. When scaling in the Z-direction—which is the direction of the 
main axis of the first hole—this hole is scaled with their parent, to fit with the 
thickness of the rod. The other two CMs restrict the user scaling of the holes to be 
equal in X- and Y-direction and to the identity scaling for the Z-direction. This allows 
the user to adjust the diameter of the holes with respect to the defined scaling 
behavior of the part. 

Fig. 6. Scene graph section with embedded Constraint Mediators for sub-part to part dependent 
scaling. CMs implement dependency matrix semantics for scene graph systems.  

The coupling of other transformations as inter-part contraints is also possible. The 
parameters of parametrical changeable parts which are described in the KRL can be 
linked. This concept of linked transformations allows the simulation of gears in the 
virtual environment (Biermann & Wachsmuth, 2004). These gears are realized using 
the Constraint Mediators for the coupling of the transformation parameters. Simple 
rotational gears can be generated by using a coupling of the two rotations of the 
corresponding sub-parts with a certain transmission factor. E.g., a coupling of 
rotational and translational parameters can lead to a pinion gear. 

4.2.2   Part-Part Constraints (Connections) 
While the constraints for the scaling behaviour are normally fixed for each part, the 
simulation of part-part connections requires dynamic constraints. The coupling via 
constraints also allows the simulation of mating properties which can not be directly 
derived from the geometry of the parts. For example, it is possible to have plane-port 
connections, which restrict the movements of the parts so that the two connected 
planes always keep connected and in the same orientation, while they can slide until 
they reach the edges of the planes.  

The mating geometries (so called Ports) define different degrees of freedom for the 
established connections. The knowledge base contains the information of the 
constraints for each Port-type. The restricted movements of the connected parts are 
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also controlled by Constraint Mediators, which are established via the semantic net, 
when a new connection is established. Technically, a connection is implemented by 
oriented mating points whose possible movements are restricted by CMs configured 
according to the Port types’ constraints.  

The example in Fig. 7 illustrates how the connection between the screw and one of 
the rod’s holes is reflected in the target system’s scene graph: A CM establishes the 
constraints, which simulate the connection of a screw fitted in a hole of a rod. The 
CM for the connection watches the positions of the two connected extrusion Ports 
and—in this case—alters the matrixes of the root nodes of the parts, if the positions of 
the Ports do not respect the constraints that are defined for this type of connection. 

Fig. 7. Scene graph section for two parts interconnected by a constraint mediator to implement 
part-part geometric dependencies 

5   Conclusion 

We have introduced a general method for integrating semantic information into the 
VR simulation and interaction loop. It is based on an abstract knowledge 
representation layer (KRL) for high-level definition of complex application designs. 
The FESN, the KRL’s base formalism, provides a convenient method for AI related 
application solutions. It interconnects the data structures of the required simulation 
modules and provides external representation formats to express simulation data as 
well as application logic in a human readable way and hence supports reusability and 
extensibility of once developed representations. 

Semantic Entities as unified object models provide the necessary method to 
uniformly access the KRL during runtime. Using Semantic Entities as the central 
entity access facility provides several advantages: Simulation modules can be built 
which automatically match their functions to the respective target objects. Possible 
object actions and interactions can be specified in advance, using a declarative 
notation. Developed simulation components can be reused, adapted and modified 
easily. Even complex application developments can be performed by generating a few 
lines of XML code for the required knowledge structure. 

The usefulness of a high-level knowledge representation has been demonstrated (1) 
for a generalized scene representation which extends the expressiveness of commonly 
used scene graphs and (2) for the implementation of novel multimodal interaction 
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methods. The illustrated method is currently applied in several projects in our lab 
which focus on multimodal human-computer interaction and virtual construction 
applications. 

Future work expands the KRL to support a variety of simulation components from 
different graphics packages to physics libraries. The final goal is a platform which 
conceptually allows abstract definition of intelligent VR applications via the KRL 
with as minimal adaptations from the utilized simulation systems core functionality. 
This work has already begun with the development of an automatic data 
synchronization and replication framework required. 
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