

A. Butz et al. (Eds.): SG 2005, LNCS 3638, pp. 25 – 39, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Knowledge in the Loop: Semantics Representation
for Multimodal Simulative Environments

Marc Erich Latoschik, Peter Biermann, and Ipke Wachsmuth

AI & VR Lab, University of Bielefeld

Abstract. This article describes the integration of knowledge based techniques
into simulative Virtual Reality (VR) applications. The approach is motivated
using multimodal Virtual Construction as an example domain. An abstract
Knowledge Representation Layer (KRL) is proposed which is expressive
enough to define all necessary data for diverse simulation tasks and which
additionally provides a base formalism for the integration of Artificial
Intelligence (AI) representations. The KRL supports two different
implementation methods. The first method uses XSLT processing to transform
the external KRL format into the representation formats of the diverse target
systems. The second method implements the KRL using a functionally
extendable semantic network. The semantic net library is tailored for real time
simulation systems where it interconnects the required simulation modules and
establishes access to the knowledge representations inside the simulation loop.
The KRL promotes a novel object model for simulated objects called Semantic
Entities which provides a uniform access to the KRL and which allows
extensive system modularization. The KRL approach is demonstrated in two
simulation areas. First, a generalized scene graph representation is presented
which introduces an abstract definition and implementation of geometric node
interrelations. It supports scene and application structures which can not be
expressed using common scene hierarchies or field route concepts. Second, the
KRL’s expressiveness is demonstrated in the design of multimodal interactions.
Here, the KRL defines the knowledge particularly required during the semantic
analysis of multimodal user utterances.

1 Introduction

VR tools have historically been built around the graphics system as the major
simulation module. Nowadays, they additionally support the VR design process with
a variety of features. These include support for application or behavior graphs via
field-routing, input and output device abstraction, networking as well as scripting
capabilities. Specifically required features, like a thorough or approximated physical
simulation or gesture and speech processing for novel—multimodal—interaction
methods (see Fig 1), have to be integrated using the extension methods provided by
the VR and simulation tools utilized. Here, a promising research direction strives for a
conceptual combination of VR and AI related methods to support the design of
Intelligent Virtual Environments (IVEs) (Luck & Aylett, 2000).

26 M.E. Latoschik, P. Biermann, and I. Wachsmuth

Fig. 1. Multimodal interaction in knowledge supported construction tasks. Left: A user selects a
wheel and connects it to a complex chassis (“Take [pointing gesture] this wheel and connect it
there…”) (Latoschik, 2001). Middle: The user and the artificial communication partner MAX
agree on the referenced part on the table (Kopp et al., 2003). Right: The user scales a
previously connected part which keeps its attributes, here the wheel’s roundness (Biermann &
Jung, 2004).

AI and VR concepts have been combined in a variety of research projects using
customized and application specific integration methods. In the last few years, several
approaches have aimed at a more general way of a conceptual and technical
integration of AI techniques into simulation based systems (Cavazza & Palmer, 2000;
Luck & Aylett, 2000; Peters & Shrobe, 2003; Soto & Allongue, 2002). An integration
based on a common representation layer as proposed in (Cavazza & Palmer, 2000)
offers several advantages regarding adaptability and reusability. Its content can be
made persistent using an external file format where AI, graphics, physics and other
simulation related content are coequally expressed in a common format.

A fundamental integration of AI and VR provides the potential for a wide range of
possible applications including heuristic approximations of—e.g., physical—
simulation features and advanced multimodal interaction setups. For example, we
have enriched our VEs with multimodal instruction type interactions as well as with a
humanoid communication partner called MAX (Kopp et al., 2003). Here, lexical and
semantic content about the simulated scene is mandatory during both, the analysis of
the user’s and the generation of Max’s multimodal utterances.

1.1 Knowledge Representation in VR

This article presents a unified and comprehensive method of knowledge integration
and access in VR-based simulation systems. This method will be illustrated in two
example areas: knowledge supported virtual construction and multimodal interaction.
On shallow examination the two areas seem to differ significantly. In a closer
examination, we will illustrate how necessary generalizations made from both, the
example applications’ data representations, as well as from the VR-simulation
specific data representations lead to a common knowledge layer capable of a high-
level description of advanced simulation features.

We start by introducing the used terminology and by a closer analysis of the built-
in semantics of existing representations of generic VR-simulation system. From a
knowledge based view, objects and structures of a simulation system can be defined
by entities, attributes, relations, and concepts.

 Knowledge in the Loop: Semantics Representation 27

Entities represent simulated objects. Attributes describe certain feature-value pairs
of entity representations. For example, simple well known attributes for the graphics
part are (RGBA) diffuse colors of the utilized lighting model or 9 float values for
transformation specification as illustrated in the upcoming Fig. 2 and Fig. 3 by the
9DOF nodes. Each of these nodes carries 9 floats which are associated to a given
entity, e.g., 2_hole_rod or hole1 in Fig. 2, to specify its transformation. All atomic
data about entity features are eventually described as attributes, from simple color
values, diameters of holes, entity masses up to functional features attributes like is-
scalable or is-connectable.

Relations generally describe n-ary predicates of attributes, entities and concepts.
Concepts represent categories, semantic circumscriptions of objects and attributes of
the regarded target domain as illustrated in Fig. 2 and Fig. 4 for the base node of the
2_hole_rod entity which instantiates a ROD concept. Concepts are attribute and
entity descriptions, patterns or classes. A typical known relation of scene graph
systems is the part_of relation that defines the scene hierarchy and grouping
behavior.

With respect to the example domain, the term part denotes non-decomposable but
modifiable entities used in the construction process. Parts consist of sub-parts which
relate to semantically self-contained sections of parts. A sub-part is defined (1) by its
position relative to a part’s frame of reference and (2) by a set of sub-part specific
attributes which describe the sub-part’s type. Sub-parts can not be instantiated without
a part to which they are bound conceptually– they can not be deconstructed during
user interaction.

1.2 Built-In Semantics of VR-Simulation Systems

The semantics of attributes and relations commonly used in simulation systems is
defined procedurally. The interpretation of attributes and relations is defined by the
underlying technical processes of the simulation modules. For example, color-
attribute values are used to calculate pixel-shadings with respect to utilized lighting
model, and part_of scene graph relations define the accumulative multiplication of
matrices on the matrix stack. This operational and fixed semantics limits the
representations available to the predefined rendering tasks and complicates or even
inhibits their utilization for different application specific representations. The
expressiveness of the scene graph related part_of relation as well as those of
application graphs built from field route connections is strictly defined by the
procedural semantics of the simulation system.

As a consequence, additional representations are necessary for reasonably complex
applications since the existing features of the simulation engines are not expressive
enough. This often results in purpose-built solutions which lose the declarative
expressiveness, the reusability as well as the flexibility of the representation methods
provided by the simulation engines. For example, a common solution in field route
based systems is to define new node types which receive certain data and manipulate
this data using specialized algorithms. Most VR-based simulation systems include
methods for such extensions, e.g., VRML (Carey et al., 1997) supports this approach
using the built-in PROTO feature.

28 M.E. Latoschik, P. Biermann, and I. Wachsmuth

In the worst case, none of the built-in extension features are expressive and
powerful enough for some applications. In that case, external modules are often
loosely coupled to the simulation system and data is exchanged between them using
standard interprocess communication (IPC) facilities. This in turn requires special
purpose external synchronization and data-replication which complicates application
development significantly or even prevents expandability and reusability of systems’
components. Furthermore, in certain areas a loose coupling can in fact be insufficient.
For example, continuous user interaction, e.g., dragging of an object, usually requires
a high responsiveness which can not be guaranteed at all times using loose coupling
without concurrently using IPC blocking behavior.

2 Simulation Knowledge Representation Layer

Our goal is a common Knowledge Representation Layer (KRL) which contains VR-
simulation specific as well as application tailored knowledge. The subsequent
explanations presuppose a simulation system which at least provides scene and
behavior graph structures as for instance offered by the AVANGO toolkit
(Tramberend, 1999). Hence, relations defined in the knowledge layer first of all have
to represent the target system’s representational features, and similar steps are
necessary for other target systems.

Fig. 2. Knowledge representation of an example part (a rod with two holes, see upper right)
which supports intelligent scaling operations

sg_part_of (scene graph parent/child): Transitive directed relation denoting
grouping behavior of scene graph nodes. Implies accumulative multiplication of
existent matrix attributes found at nodes followed in the given relation direction.

fr_connect_to (field route connection): Transitive directed relation denoting
value propagation of attributes in the given relation direction.

f_control_to (field reference): Directed relation denoting referential (not routed)
read/write access to fields of target nodes by specialized source nodes.

 Knowledge in the Loop: Semantics Representation 29

Additional relations are defined to express the application specific knowledge. The
following relations and their semantics support virtual construction tasks that group
parts to aggregates and specify geometric dependencies between (sub-)parts:

is_sub_part: Transitive directed relation denoting the association of a sub-part to

a part.
is_a: Transitive directed relation denoting a subsumption hierarchy for part

concepts. is_a implies inheritance behavior of certain attributes, e.g., lexical
information, of parent concepts.

has_FOR: Directed relation denoting the association of a frame of reference
(FOR) to a given concept, e.g., a part or a sub-part.

9DOF_dependency: Transitive directed relation denoting a geometric
dependency between two 9DOFs (9 Degrees of Freedom) as parameterized by a
9DOF_dep_mat concept which defines the dependencies (see following sections).

9DOF_relative_to: Transitive directed relation denoting the relative position,
orientation, and scaling of a 9DOF with respect to a given 9DOF frame of reference.

Fig. 2 illustrates a segment of the resulting knowledge structure which supports

intelligent scaling operations for a rod with two holes as sub-parts which are defined
to behave independently during a scaling operation of the main part, e.g., to maintain
the holes’ roundness during scaling operations. All parts and sub-parts have
associated 9DOF frames of reference which define their position, orientation and
scaling using the has_FOR relation. This ensures that grouping and transformation
are expressed independently from each other. The sub-parts’ FORs are defined to be
relative to the main part’s FOR via a dependent mapping defined by the
9DOF_dependency which parameterizes the 9DOF_relative_to relation using the
9DOF_dep_mats.

The semantics of this representation is as follows: The 3x3 dependency matrix of a
9DOF_dep_mat defines how the factors for position (first matrix row entries),
rotation (second row) and scaling (third row) are concatenated following the algebraic
semantics of the 9DOF_relative_to relation. In its plain assertion between two
FORs, the 9DOF_relative_to defines well known multiplication of homogenous
coordinate representations which would express common scene-graph behavior. In
contrast, the chosen representation allows an extensive parameterization of the
concatenation type of two linked FORs. Fig. 3 illustrates how arbitrary

Fig. 3. Parameterized coupling of attribute values which are calculated according to the
algebraic rule as defined by the embracing relation, here the 9DOF_absolute_to relation

30 M.E. Latoschik, P. Biermann, and I. Wachsmuth

parameters—constant values as well as functions—can be defined to modulate the
algebraic effect or calculation rule of the active relation which couples two attributes.

The free interconnection of attributes even allows coupling between different
geometric attributes or DOFs e.g., to have one part to rotate if another part translates
or to match one part’s scaling by a rotation of two other parts if two dependency
matrices are used.

The two zeroes in the last row of the left and the middle 9DOF_dep_mat in Fig.
2. represent a missing p_coupled relation and hence define partial blocking of the
9DOF_relative_to semantics which defines a parent-child relation between the main
part and the holes. This suppresses the consecutive impact of parent part’s total
scaling and only scales hole1 in the z- and hole2 in the y-direction (the principal axes
of the holes’ main directions).

3 Interaction Knowledge Representation Layer

The KRL is not limited to the representation of geometric dependencies as motivated
for the virtual construction task. Its overall goal is to support application specific
representation models as well as commonly required VR-related modeling tasks. This
includes high level representations of entity data and structures for the variety of
involved software modules, e.g., for the graphics, physics and the interaction
components.

The idea of a semantic representation is in fact strongly inspired by the intention to
utilize multimodal—gesture and speech driven—interactions in VEs. Processing of
multimodal utterances can be roughly divided into several phases: Speech and gesture
detection, semantic speech and gesture analysis, multimodal integration and
pragmatic analysis. During processing, several of these phases frequently access
semantic content from redundant data representations of other simulation modules.
Here, a unified KRL partly solves the multiple database problem.

A major design goal for the knowledge representation layer is to support
semantics, necessary during interaction. This includes, e.g., mappings between
conceptual and lexical data for a variety of concepts and attributes. These concepts do
not only represent perceivable entities and their features in the artificial world but also
abstract concepts, e.g., holes in a part or actions a user can carry out.

The necessity for the representation of semantics is evident for the semantic
analysis phase which has to map lexical and gestural expressions to conceptual
knowledge. Fig. 4 presents another view into the semantic network which represents
the example two-holed rod. The grey nodes illustrate instantiation of a two-holed rod.
The conceptual definition of a two-holed rod (grey rectangular nodes) is used as a
template for the actual instance (grey oval nodes). Instances represent the existing
entities of the simulation. Their inheritance of concepts and attributes as defined by
their conceptual templates is customizable. If they are not inherited during
instantiation, their inheritance behavior is defined per relation following the
connecting relations (here inst_of and is_a). Specialized negating relations (pattern
<x>not_<y>, e.g., hasnot_feature) provide a method to locally override the default
inheritance behavior.

 Knowledge in the Loop: Semantics Representation 31

Fig. 4. Conceptual and lexical knowledge representation of the two-holed rod

Fig. 4 illustrates the interconnection between entity features which define certain
simulation behavior, e.g., whether an entity is scalable, and the representation of the
according user action by the SCALE, CONNECT and ACTION concepts. These
interaction concepts further define their required conceptual knowledge to be fulfilled,
e.g., a required target or a required interaction parameter. Where linguistic knowledge
is given by linking concepts to lexical counterparts, the semantic analysis processing
module is automatically enabled to map lexical information to conceptual knowledge
which then can be instantiated during the processing.

For example, a connection of the screw and the two-holed rod in the virtual
construction task can be accomplished in two ways. The direct manipulation way is to
drag the screw. When the screw collides with the rod, the best fitting ports (here the
holes) are heuristically determined and appropriate modules will be activated to
simulate the connection (see subsequent sections).The second way is by using
multimodal interaction, e.g., by saying: “Put [pointing gesture] that screw in [pointing
gesture] this hole.” (see, e.g., Fig. 1. left). Focusing on the linguistic part, input is
analyzed by mapping the incoming words to the lexicon which is defined by the target
concepts of the has_lex relation in Fig. 4. By backward traversing these relations
during the parse process (Latoschik, 2002), the matching base concepts are retrieved
from the KRL.

The conceptual knowledge is now used according to its semantics. For example,
verbs found in imperative speech such as “Give me a…”will be looked up in the
lexicon. Traversing the has_lex relation will retrieve the respective concept. If this
concept is then identified as an ACTION, e.g., by traversing the type hierarchy,
matching interaction frames will be retrieved and instantiated which define required
interaction information, e.g., the required target OBJECT instance(s). In addition to
the illustration in Fig. 4, the actual existing knowledge base decomposes OBJECT
concepts into their substructures, relates them to the two existing type hierarchies, and
augments the linguistic structures with syntactic information.

has_feature

has_feature feature_of

feature_of

has_wordtype

inst_of

inst_of

inst_of

ROD

2_hole_rod

hole1

hole2

body

9DOF
is_a

is_sub_part

has_lexrod
bar

hole

has_FOR

THREAD

connectable

HOLE

is_a

PART

is_a

ENTITY

is_a

has_lex

connectable

has_lex

thing
object
...

part has_lex

has_lex

CONNECT
ACTIONis_a

SCALE
is_a

thread
worm

has_lex

connect
mate

has_lex

scale
resize

has_lex

2hr_12

is_sub_part

is_sub_part

h_23

h_24

b_11

is_sub_part

scalable

scalable
resizable

has_lex

is_sub_part

9DOF_72

has_FOR

OBJECT
target
value SIZE

target
OBJECT

OBJECT

source

VERB

inst_of
is_sub_part

inst_of

inst_of
inst_of

32 M.E. Latoschik, P. Biermann, and I. Wachsmuth

These interaction frames, their concepts and attributes, are used as templates which
are filled during input processing. For example, if the template requires one or more
objects, the parse process will feed a reference resolving engine with the conceptual
information necessary to identify one or more target entities (Pfeiffer & Latoschik,
2004). Since the KRL interconnects instances with the data representations of other
simulation modules, this data, e.g., a quantitative RGBA value for a color attribute
will be processed in the same way. Finally, completed interaction frames trigger the
desired interaction.

4 Implementing and Applying the KRL

To implement the KRL, a knowledge representation tool, FESN (Functionally
Extendable Semantic Network) (Latoschik & Schilling, 2003), has been developed.
The FESN offers a specialized and adaptable semantic net formalism which is
implemented as a C++ library and which has special features targeted at its utilization
in VR simulation systems and for diverse application specific representation tasks.

Attribute augmentation of concepts: FESN nodes can carry additional attributes
and values which allows a seamless transformation of a target system’s
representations into the FESN.

Functional extensibility: Flexible relation semantic. New relation types can be added
easily. The semantics of relations is expressed by functions added to the relations.

Built-In event system: Changes of attribute values and the network’s structure are
monitored to enable automatic processing of changes submitted by simulation
modules.

Built-In event filter: Concepts (nodes) of the FESN can be associated with multiple
external attribute sources of the same attribute. A parameterized filter concept allows
automatic evaluation and selection of concurrent—possibly conflicting—value
changes.

External XML representation: The FESN supports SNIL, the Semantic Net
Interchange Language, as an XML based external representation. This provides a
convenient way to define and modify knowledge layer content (see Fig. 5).

Furthermore, the low level implementation of the FESN as a C++ library allows
several performance optimizations which conserve processing resources in contrast to
commonly found high-level (e.g. PROLOG or LISP based) semantic net realizations.
This is particularly important for the FESN’s utilization in interactive real-time
simulations.

Using the FESN as the base formalism, the KRL completely defines all data and
knowledge required by a simulation system in a unified representation, including
graphics, physics, audio or even AI and interaction content. The KRL’s content is
applied to simulation systems in two ways. The first, uncoupled, method transforms
knowledge bases defined by SNIL into representations compatible with the simulation

 Knowledge in the Loop: Semantics Representation 33

modules of the target system. Several of these modules support external
representations. Some of them support proprietary XML based formats, e.g., we have
previously developed an XML based format for a simulation module which handles
variant parts: VPML (Variant Part Markup Language) (Biermann & Jung, 2004). The
required mapping between source and target representation is conveniently achieved
via XSLT processing where the mapping rules only have to be statically defined once.

In contrast to the uncoupled method, the coupled method embeds the FESN as a
separate module directly into the simulation system’s process space and latches
knowledge access into the simulation loop(s) of all simulation modules which share
this process space. In such setups, the FESN acts as a central knowledge base and
monitoring instance. Its event system provides a method to control and filter value
changes of attributes which might be proposed by several modules concurrently, e.g.,
for the 9DOF attribute.

4.1 Semantic Entities

The coupled method provides two ways of knowledge access: First, arbitrary FESN
queries can be directly called on semantic net structures which are mapped into the
process space of the calling modules. Second, modules can use an object centered
KRL-access to dedicated entities in their own proprietary object representation. In
effect, each of the simulation module specific entities has a corresponding counterpart
represented in the KRL. By augmenting the module specific entity representation with
an FESN-interface—for example, using object oriented multiple inheritance
schemes—the entities’ semantic data is directly accessible by the given simulation
module. This architecture leads to a novel object or entity model we call Semantic
Entities. Semantic Entities link proprietary entity representations with the
correspondent instances of the knowledge layer and provide a standardized way of
accessing the KRL.

The uniform KRL-access via Semantic Entities allows for an increased and
powerful modularization of simulation systems. Typical architectures for
implementing some specific functionality for a given simulation utilize so-called
engines. Engines are dedicated modules in scene graph based systems which
implement a certain function and which apply their results by accessing target nodes
and attributes directly or by propagating attribute changes using a behavior graph.
Here, target nodes and attribute-routes have to be specified by the application
programmer specifically, be it for a simple interpolator engine or for an advanced
collision and dynamics engine. Using Semantic Entities, information about object
animation and manipulation specification is conveniently defined declaratively using
the KRL. By querying the KRL via the Semantic Entities in the engines’ or modules’
process space, requested object features, like if an object is movable, or collidable, or
any other feature a specific engine requires, can directly be accessed.

For example, we have developed several components for multimodal interaction
which completely rely on Semantic Entity access. Dedicated engines preselect and
sort possible targets’ Semantic Entities in the scene representation according to users’
gestures like view and pointing direction. This set of possible targets is then further

34 M.E. Latoschik, P. Biermann, and I. Wachsmuth

restricted to objects which satisfy the semantic interpretation of type or attribute
specifications, e.g., during the processing of definite noun phrases like “…the blue
rod…”: A KRL retrieval for the word “…rod…” will find the ROD concept by
following its has_lex relation in Fig. 4. This result will restrict the preselected set of
Semantic Entities to entities of the required type, e.g., to include the 2hr_12 instance
in Fig. 4 which is of type ROD following the transitive inst_of and is_a relation. The
semantic interpretation engine uses Semantic Entities for object centered KRL access
to map the utterance’s meaning to the semantic scene description which includes
representations of the user and possible interaction partners as in Fig. 1.Other
components evaluate the construction specific knowledge of entities and
automatically instantiate required simulation modules which implement a given entity
feature as will be explained in the following sections.

The Semantic Entity object model greatly simplifies the development of Virtual
Environments. It promotes modularization, easy adjustment, and reuse of simulation
components. Components access specific entity features via Semantic Entities.
Additionally, the components themselves can be represented in the KRL to provide an
automatic mutual matching of tools and target objects since they share the same
representation.

4.2 Mapping Knowledge to Target Systems

Besides KRL-access, both knowledge application methods have to map the FESN
representations to a target system’s internal representation. This mapping transforms
the modeled knowledge into structures readable and interpretable by the respective
simulation modules. For the example two-holed rod, the knowledge fragment that
defines the geometric dependency of hole1 (see Fig. 2.) is illustrated in Fig. 5 using
the SNIL notation.

Our current AVANGO-based target system supports a scene graph metaphor with
a field route concept and allows implementation of new proprietary node types. This
justifies grouping of sub-parts as children of the main part. But this maps the
modulated 9DOF_relative_to relations to fixed sg_part_of relations. To overcome
the fixed scene graph semantics, a new node type called Constraint Mediator (CM)
was developed which is parameterized by a dependency matrix for constraint
definition. Instead of Geometric Constraint Solvers as in (Fernando et al., 2001),
which solve the constraints in an external system, the CMs in our target system
implement the defined geometric dependencies as constraint nodes in the scene graph
and apply them directly to the 4x4 transformation matrices. In other possible target
systems, like VRML97, these constraints could be realized by using Script-Nodes,
whereas the implementation of the scripting interface in VRML is often very slow
(Diehl & Keller, 2002).

The CM nodes can monitor several fields to restrict and propagate their values.
Unlike normal field connections (e,g, the field routes in VRML), CMs can propagate
field-values in both directions and can alter the values while propagating, to establish
complex constraints directly in the scene graph. These constraints implement the
geometric dependencies of the knowledge based simulation as defined by the
knowledge layer in the target system.

 Knowledge in the Loop: Semantics Representation 35

<semantic-net>
 <node name="2_hole_rod" type="Default"/>
 <node name="9DOF_2_hole_rod" type="Default">
 <slot name="FOR" type="9DimVect"
 inheritanceType="Attribute"
 value="0 0 0 0 0 0 1 1 1"/>
 </node>
 ...
 <node name="hole1" type="Default"/>
 <relation typeName="is_sub_part">
 <start-node nodeName="hole1"/>
 <end-node nodeName="2_hole_rod"/>
 </relation>
 <node name="9DOF_hole1" type="Default">
 <slot name="FOR" type="9DimVect"
 inheritanceType="Attribute"
 value="-.2 0 0 0 0 0 0 1 1 1"/>
 </node>
 <relation typeName="has_FOR">
 <start-node nodeName="hole1"/>
 <end-node nodeName="9DOF_hole1"/>
 </relation>
 <node name="9DOF_dep_mat_hole1" type="Default">
 <slot name="FOR" type="81DimMat”
 inheritanceType="Attribute"
 value=" … (9x6 identity)1
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1"/>
 </node>
 <relation typeName="9DOF_relative_to">
 <start-node nodeName="9DOF_dep_mat_hole1"/>
 <end-node nodeName="9DOF_2_hole_rod"/>
 </relation>
 ...
</semantic-net>

Fig. 5. SNIL fragment that partly describes the two-holed rod example. The extended
dependency matrix that defines hole1’s dependent scaling is defined as an attribute of the
9DOF_dep_mat_hole1 concept.

4.2.1 Inter-Part Constraints (Scaling / Transformations)
One application area for the dependency matrices is the simulation of building parts
and sub-parts, which can have complex scaling behavior, depending on the scaling of
their parent parts. Fig. 6 shows an example of a scene graph section with CMs which
prevent the deformation of the holes when scaling the rod. When the user scales the
rod in the X- or Y-direction, the two upper CMs in Fig. 6 set the adjust-scaling of the

1 Only the lower three matrix rows which are relevant for scaling dependencies are depicted for

readability.

36 M.E. Latoschik, P. Biermann, and I. Wachsmuth

holes to the inverse of the scaling of these directions to maintain the size and
roundness of the holes. When scaling in the Z-direction—which is the direction of the
main axis of the first hole—this hole is scaled with their parent, to fit with the
thickness of the rod. The other two CMs restrict the user scaling of the holes to be
equal in X- and Y-direction and to the identity scaling for the Z-direction. This allows
the user to adjust the diameter of the holes with respect to the defined scaling
behavior of the part.

Fig. 6. Scene graph section with embedded Constraint Mediators for sub-part to part dependent
scaling. CMs implement dependency matrix semantics for scene graph systems.

The coupling of other transformations as inter-part contraints is also possible. The
parameters of parametrical changeable parts which are described in the KRL can be
linked. This concept of linked transformations allows the simulation of gears in the
virtual environment (Biermann & Wachsmuth, 2004). These gears are realized using
the Constraint Mediators for the coupling of the transformation parameters. Simple
rotational gears can be generated by using a coupling of the two rotations of the
corresponding sub-parts with a certain transmission factor. E.g., a coupling of
rotational and translational parameters can lead to a pinion gear.

4.2.2 Part-Part Constraints (Connections)
While the constraints for the scaling behaviour are normally fixed for each part, the
simulation of part-part connections requires dynamic constraints. The coupling via
constraints also allows the simulation of mating properties which can not be directly
derived from the geometry of the parts. For example, it is possible to have plane-port
connections, which restrict the movements of the parts so that the two connected
planes always keep connected and in the same orientation, while they can slide until
they reach the edges of the planes.

The mating geometries (so called Ports) define different degrees of freedom for the
established connections. The knowledge base contains the information of the
constraints for each Port-type. The restricted movements of the connected parts are

 Knowledge in the Loop: Semantics Representation 37

also controlled by Constraint Mediators, which are established via the semantic net,
when a new connection is established. Technically, a connection is implemented by
oriented mating points whose possible movements are restricted by CMs configured
according to the Port types’ constraints.

The example in Fig. 7 illustrates how the connection between the screw and one of
the rod’s holes is reflected in the target system’s scene graph: A CM establishes the
constraints, which simulate the connection of a screw fitted in a hole of a rod. The
CM for the connection watches the positions of the two connected extrusion Ports
and—in this case—alters the matrixes of the root nodes of the parts, if the positions of
the Ports do not respect the constraints that are defined for this type of connection.

Fig. 7. Scene graph section for two parts interconnected by a constraint mediator to implement
part-part geometric dependencies

5 Conclusion

We have introduced a general method for integrating semantic information into the
VR simulation and interaction loop. It is based on an abstract knowledge
representation layer (KRL) for high-level definition of complex application designs.
The FESN, the KRL’s base formalism, provides a convenient method for AI related
application solutions. It interconnects the data structures of the required simulation
modules and provides external representation formats to express simulation data as
well as application logic in a human readable way and hence supports reusability and
extensibility of once developed representations.

Semantic Entities as unified object models provide the necessary method to
uniformly access the KRL during runtime. Using Semantic Entities as the central
entity access facility provides several advantages: Simulation modules can be built
which automatically match their functions to the respective target objects. Possible
object actions and interactions can be specified in advance, using a declarative
notation. Developed simulation components can be reused, adapted and modified
easily. Even complex application developments can be performed by generating a few
lines of XML code for the required knowledge structure.

The usefulness of a high-level knowledge representation has been demonstrated (1)
for a generalized scene representation which extends the expressiveness of commonly
used scene graphs and (2) for the implementation of novel multimodal interaction

38 M.E. Latoschik, P. Biermann, and I. Wachsmuth

methods. The illustrated method is currently applied in several projects in our lab
which focus on multimodal human-computer interaction and virtual construction
applications.

Future work expands the KRL to support a variety of simulation components from
different graphics packages to physics libraries. The final goal is a platform which
conceptually allows abstract definition of intelligent VR applications via the KRL
with as minimal adaptations from the utilized simulation systems core functionality.
This work has already begun with the development of an automatic data
synchronization and replication framework required.

Acknowledgement

This work is partially supported by the Deutsche Forschungsgemeinschaft (DFG).

References

Biermann, P., & Jung, B. (2004). Variant design in immersive virtual reality: A markup
language for scalable CSG parts, AMDO2004: Springer.

Biermann, P., & Wachsmuth, I. (2004). Non-physical simulation of gears and modifiable
connections in virtual reality, Proceedings Fifth Virtual Reality International
Conference (VRIC 2003) (pp. 159-164). Laval, France.

Carey, R., Bell, G., & Marrin, C. (1997). Iso/iec 14772-1:1997 virtual reality modeling
language (vrml): The VRML Consortium Incorporated.

Cavazza, M., & Palmer, I. (2000). High-level interpretation in dynamic virtual environments.
Applied Artificial Intelligence, 14(1), 125-144.

Diehl, S., & Keller, J. (2002). Constraints for 3D graphics on the internet, Proceedings of 5th
International Conference on Computer Graphics and Artificial Intelligence 3IA'2002.
Limoges, France.

Fernando, T., Marcelino, L., & Wimalaratne, P. (2001). Constraint-based immersive virtual
environment for supporting assembly and maintenance task, Human Computer
Interaction International 2001. New Orleans, USA.

Kopp, S., Jung, B., Lessmann, N., & Wachsmuth, I. (2003). Max—a multimodal assistant in
virtual reality construction. KI-Künstliche Intelligenz, 03(4), 11-17.

Latoschik, M. E. (2001). A gesture processing framework for multimodal interaction in virtual
reality. In A. Chalmers & V. Lalioti (Eds.), AFRIGRAPH 2001, 1st International
Conference on Computer Graphics, Virtual Reality and Visualisation in Africa (pp.
95-100): ACM Press.

Latoschik, M. E. (2002). Designing transition networks for multimodal VR-interactions using a
markup language, Fourth IEEE International Conference on Multimodal Interfaces
ICMI'02 (pp. 411–416). Pittsburgh, Pennsylvania: IEEE Press.

Latoschik, M. E., & Schilling, M. (2003). Incorporating VR databases into AI knowledge
representations: A framework for intelligent graphics applications, Sixth IASTED
International Conference on Computer Graphics and Imaging (pp. 79-84): ACTA
Press.

Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent
virtual environments. Applied Artificial Intelligence, 14(1), 3-32.

 Knowledge in the Loop: Semantics Representation 39

Peters, S., & Shrobe, H. (2003). Using semantic networks for knowledge representation in an
intelligent environment, PerCom'03: 1st Annual IEEE International Conference on
Pervasive Computing and Communications. Ft. Worth, TX, USA: IEEE.

Pfeiffer, T., & Latoschik, M. E. (2004). Resolving object references in multimodal dialogues
for immersive virtual environments, IEEE VR2004 (pp. 35-42). Chicago: IEEE.

Soto, M., & Allongue, S. (2002). Modeling methods for reusable and interoperable virtual
entities in multimedia virtual worlds. Multimedia Tools Appl., 16(1-2), 161-177.

Tramberend, H. (1999). Avocado: A distributed virtual reality framework, 1999 IEEE Virtual
Reality Conference (VR99) (pp. 14-21). Houston, Texas: IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

