Semantic Reflection — Knowledge Based Design
of Intelligent Simulation Environments

Marc Erich Latoschik

AT & VR Lab, AI Group, Bielefeld University
marcl@techfak.uni-bielefeld.de,

Abstract. This paper introduces Semantic Reflection (SR), a design
paradigm for intelligent applications which represents applications’ ob-
jects and interfaces on a common knowledge representation layer (KRL).
SR provides unified knowledge reflectivity specifically important for com-
plex architectures of novel human-machine interface systems.

1 Introduction

A principle found in intelligent virtual environments [4] is a semantic represen-
tation of scene content [2,3,5,7,8]. Reflecting semantic information on a de-
dicated KRL has shown to be beneficial for several domains of computational
intelligence, from novel — e.g. multimodal — man-machine interactions to vir-
tual agents, or advanced computer games. Semantic models strongly influence
recent semantic web efforts and have also gained interest in OOP [6] as enriched
representations for object reflection. In the software engineering domain, recent
approaches explore the usefulness of ontologies to describe the engineering pro-
cess of complex systems [1].

specific techniques/r/\m
data/objects/interfac e 3 C%%} apggggt;on
O
impl. language bindir(O ~0
OO0
1

Fig. 1: Semantic Reflection reflects objects, interfaces, and techniques from vari-
ous modules on a unified knowledge representation layer for high-level applica-
tion design.

Semantic Reflection (SR) combines and advances these directions. It is
a design principle based on a unified semantic description and implementation

node 1 1l99ers ~ /hode 2 Ii) node 1 rI9gers ~u /node 2

position rotation position | .. rotation

bounds bounds bounds |---e.--.~-2 ¥ bounds

velocity anglet velocity .-~ [anglel

rotation position rotation |--~ Al position
core events [

Fig. 2: Semantic representation of application graph technique. Each object is re-
flected by a semantic net node. A new triggers relation is defined which denotes
a required event propagation between the objects. The triggers relation is imple-
mented by the FESN’s core event system by establishing core event connections
between compatible slots of the connected nodes (see right side).

layer for modular but closely coupled applications which require a built-in know-
ledge layer support. Integrated into a modular architecture as illustrated in fi-
gure 1, SR first establishes a semantic binding to the implementation languages
of given modules. Second, it reflects a module’s low level design primitives, i.e.,
the chosen data structures, objects, and interfaces. Third, it reflects the modules’
particular techniques like state machines, scene graphs, application graphs etc.
To provide Semantic Reflection as a central design feature, a dedicated Func-
tional Extendable Semantic Net (FESN) base formalism provides performance
optimizations like hashing and an internal core event system for implementing
the procedural semantics for the reflected techniques and interface bindings.

2 Example Module Techniques and Interfaces

Figure 2 illustrates how the base formalism is used to design an application
graph, a specific technique for a message system with limited types of events
and a fixed chronology of event processing, on the KRL: triggers-relations are di-
rected relations between two nodes. The procedural semantics for the assignment
of triggers-relations between nodes is as follows: Core FESN-event connections
are established between all compatible slots of connected nodes (see dotted lines
in figure 2). This behavior is conveniently implemented using the FESN’s func-
tional extendibility by deriving the triggers-relation from the base relation and
then redefining its assert method. It is to the developers choice to implement
different semantics, e.g., application designers might desire field connections to
be established per field and not per object.

There are situations where either the provided modules’ techniques are in-
sufficient in terms of a required inter-module data exchange or such dedicated
techniques are plainly not provided and modules require direct access to the
other modules’ interfaces. Hence, modules can export their interface to provide
interface reflection on the semantic layer for a high-level definition of function
call execution as illustrated in figure 3.

Gontext / realization

module
mod-type <— executes

calling-conv retval

proc.
isa —™\ step

inst inst inst
inst
followed_by followd_by
funcl |« executes o stept step2

retval retval ... retval
param1 param1 "7 param1
..y~ | param2
paramN cell24 paramN
value fmmmmmn e » | paramN

Fig. 3: Basic scheme of function call representation. Functions are lifted to the
KRL where they serve as execution targets for processing steps (terminological
knowledge represented as grey nodes). The processing steps representing func-
tion calls carry a list of slots for their return values and parameters according to
the associated functions. The core event system is used to a) define the sources
for required parameters as well as b) to finally trigger function execution. De-
composition into function description and processing steps allows for multiple
arbitrary processing chains. Independent storage cells are used to insert arbitrary
parameters into the call chain between the functions.

3 Conclusion

Semantic reflection has proven to be extremely useful in recent application de-
signs implemented at our lab. It is a novel design paradigm which effectively
supports the development of complex but on the other hand extensible and
reusable components. As one example, the left pictures in figure 4 are taken
during interaction scenes with a virtual agent. The right side illustrates, how
semantic reflection of the graphical scene is utilized to reflect the agent’s per-
ception as well as the agent’s and the user’s interaction.

Acknowledgment: This work is partly supported by the DFG under grant Wa
815/2 and the EU project PASION under contract number 27654 in FP6-IST.

References

1. Coral Calero, Francisco Ruiz, and Mario Piattini. Ontologies for Software Engineer-
ing and Technology. Springer, 2006.

2. E. Kalogerakis, S. Christodoulakis, and N. Moumoutzis. Coupling ontologies with
graphics content for knowledge driven visualization. In Proceedings of the IEEE
VR2006, pages 43-50, 2006.

Fig. 4: Left: Interaction with a virtual agent. The agent’s perception components
automatically access user interactions in the context of the current environment.
For example, the agent’s vision is implemented as a view sensor monitoring the
scene. Using semantic reflection, the agent derives the semantics of what he sees.
His higher cognitive processes use this knowledge to further process incoming
percepts and to generate appropriate multimodal responses.

3. Marc Erich Latoschik and Malte Schilling. Incorporating VR Databases into Al
Knowledge Representations: A Framework for Intelligent Graphics Applications.
In Proceedings of the Sizth International Conference on Computer Graphics and
Imaging, pages 79-84. TASTED, ACTA Press, 2003.

4. Michael Luck and Ruth Aylett. Applying Artificial Intelligence to Virtual Reality:
Intelligent Virtual Environments. Applied Artificial Intelligence, 14(1):3-32, 2000.

5. Jean-Luc Lugrin and Marc Cavazza. Making Sense of Virtual Environments: Action
Representation, Grounding and Common Sense. In Proceedings of the Intelligent
User Interfaces IUI’07, 2007.

6. José Meseguer and Carolyn Talcott. Semantic models for distributed object reflec-
tion. In ECOOP 2002 - Object-Oriented Programming: 16th FEuropean Conference
Malaga, Lecture Notes in Computer Science, pages 1-36. Springer Berlin / Heidel-
berg, 2002.

7. Stephen Peters and Howie Shrobe. Using semantic networks for knowledge represen-
tation in an intelligent environment. In PerCom ’03: 1st Annual IEEE International
Conference on Pervasive Computing and Communications, Ft. Worth, TX, USA,
March 2003. IEEE.

8. Michel Soto and Sébastien Allongue. Modeling methods for reusable and inter-
operable virtual entities in multimedia virtual worlds. Multimedia Tools Appl.,
16(1-2):161-177, 2002.

