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ABSTRACT

We introduce semantic reflection as an architectural concept for In-
telligent Virtual Environments (IVEs). SCIVE, a dedicated IVE
simulation core, combines modularity with close coupled integra-
tive aspects to provide semantic reflection on multiple layers from
low-level simulation core logic, specific simulation modules’ appli-
cation definitions, to high-level semantic environment descriptions.
SCIVE’s Knowledge Representation Layer provides the central or-
ganizing structure which ties together data representations of sim-
ulation modules, e.g., for graphics, physics, audio, haptics, or AI
etc., while it additionally allows bidirectional knowledge driven ac-
cess between the modules.
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1 INTRODUCTION

Rich believable worlds frequently demand the integration of spe-
cial purpose software modules, e.g., for the simulation of graph-
ics, sounds, collisions, physics or haptics. Purpose-built VR
development tools often adopt design principles of the under-
lying graphics system like scene and application graphs while
they additionally provide VR specific key features [17] like in-
put/output device customization (AVANGO [19], Lightning [6], VR
Juggler [5], CAVELibTM, WorldToolKit R©), network distribution
(AVANGO [19], MASSIVE 3 [7], DIVE [8][2], Net Juggler), or
entity centered access to world states or world logic often realized
using event mechanisms (see, e.g., Lightning [6]).

While well motivated in the beginning, a close coupling between
application content and graphics system is disadvantageous [3] [4]
w.r.t. extensibility and portability, i.e., during the integration or re-
placement of additional simulation modules to render animations,
sounds, physics, haptics. Furthermore, intelligent virtual environ-
ments [14] demand the integration of Artificial Intelligence meth-
ods. Such modules are either included on a case by case base, or
they are integrated a priori into holistic architectures as found in
many 3D game engines like the Doom 3 Engine, the Unreal Engine
3, the Source Engine, the C4 Engine or the CryENGINETM

Extensible architectures [1][11] follow a module based ap-
proach. The goal is a decoupling of specific application content
from the internals of a simulation engine—a challenging task due
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Figure 1: Semantic reflection maps the data and object representa-
tions from various simulation applications’ layers to a unified seman-
tic knowledge representation.

to the close data and control flow coupling but distinct data repre-
sentations between the various modules. To achieve this goal, we
propose a concept called semantic reflection. Semantic reflection
extends the existing object oriented programming (OOP) reflection
concept to provide knowledge-driven access to objects’ capabilities
and interfaces. The general idea is based on a semantic represen-
tation which comprises logical scene entities [18][16][10], specific
modules’ data structures and control mechanisms, as well as the in-
ternals of the simulation engine itself (see figure 1) as inspired by
semantic models for plain OOP [15] reflection.

2 SEMANTIC REFLECTION IN SCIVE
SCIVE, a Simulation Core for Intelligent Virtual Environments im-
plements semantic reflection using a structural knowledge repre-
sentation layer (KRL) that ties the distributed world representations
together. Every application object and world entity from the three
layers following figure 1 is mirrored by specific representations us-
ing a custom-built semantic net base formalism [13]. Its low-level
C++ implementation is linked to an event system that automatically
detects read/write accesses between the connected modules and the
KRL. Since this inter-module access is synchronized internally by
the simulation core [12], different synchronization schemes can dy-
namically be applied to generate new coherent world states. These
synchronization schemes ultimately represent the result of chang-
ing flows of control between the modules.

Initially, all required modules are augmented with a wrapper [9]
which provides the necessary links to the simulation core and the
participating modules’ logic as well as the initial bindings between
the modules’ objects and entities and their KRL counterparts. On
the KRL, these counterparts—just nodes in the semantic net—are
related to the other parts of the application knowledge to grant ac-
cess to that information. In contrast to (object local) OOP reflec-
tion, semantic reflection provides semantic inter-object information
which can be obtained by traversing the relations starting from these
specific interlink-nodes which we therefore call semantic entities.

SCIVE provides bidirectional application design: The back-
wards compatible approach still permits developers to implement a
required function in a specific module: Wrappers also include map-
pings from the KRL’s semantic entities to their own object model—
usually via multiple inheritance—which then have full access to the
semantic descriptions of all objects and entities.
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Figure 2: Application layout 2: Interconnecting modules for user
interaction, agent perception and animation, KRL as well as—
potentially—physics, all using SCIVE (see text).

Figure 2 illustrates the interconnection of several independent
modules designed to implement an intelligent agent with percep-
tion and action capabilities in a physically simulated virtual world.
Both, the artificial agent as well as the user are represented by
graphics module specific semantic entities which provide a gen-
eral interface to the KRL (depicted for the nodes with dotted lines to
the KRL). Semantic entity nodes are directly placed into the scene
graph at the appropriate graphics entities.

One typical solution for the implementation of an agents visual
perception is the design of a sensor which automatically tracks ob-
jects in its direction and range. Typically, such specialized sensors
are often implemented as graphics nodes. This is reasonable since
graphics node traversal is synchronized with the application and
such a sensor has automatic access to the spatial arrangement of
the surrounding scene. One obvious solution to parameterize such
sensors is realized by reflection, i.e., by using the runtime-type sys-
tem to automatically detect compatible target nodes, i.e., nodes the
agent should monitor for a given task. Using compiled program-
ming languages like C or C++ this requires source editing and re-
compilation while such runtime type systems are often limited in
terms of their expressiveness, i.e., they are designed to reflect the
specific language object model which is often limited to plain hi-
erarchies and—to some degree—multiple inheritance. W.r.t. the
chosen KRL base formalism, this type of information can be con-
sidered rather simple and hence can easily be made accessible dur-
ing runtime. The view sensor only searches for entities which have
a given semantic tag, i.e., is agent observable to collect all
entities it should monitor since it ”knows” what it has to look for.
Having collected all target objects, bidirectional semantic reflection
enables the sensor to easily reach through and read the position data
of the entities for its local spatial ordering.

Since semantic reflection comprises all three layers from core
logic, module logic, to scene entities, application design can largely
be made modular and extensible. Tools can access object and en-
tity capabilities in a uniform way. Applications range from simple
data access and exchange, inter-module synchronization, to ontolo-
gy based entity access required for smart graphics and IVEs.
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