
Using Semantic Traversers to create persistent knowledge-based
Virtual Reality applications

Peuser, Nils
University of Bielefeld, Faculty of Technology, AI and VR Lab

P.O. Box 10 01 31, 33501 Bielefeld
Tel.: +49 (0) 521 / 5602083
E-Mail: nils@peusers.org

Latoschik, Marc Erich
FHTW Berlin, Department 4, International Media Informatics

Treskowallee 8, 10318 Berlin
Tel.: +49 (0) 171 / 7863265

E-Mail: marc.latoschik@fhtw-berlin.de

Abstract: This article introduces the concept of Semantic Traversers (STs) and exemplarily
illustrates its utilization inside a Virtual Reality (VR) platform for multimodal construction. The
development of reusable and parameterizable routines which are based on the concept of
Semantic Reflection is described. These routines work on the Knowledge Representation Layer
(KRL) of a simulation framework to realize complex application logic and data flow concepts
like field routing. The KRL is implemented by a functionally extended semantic network. The
ST development in C++ preserves real-time capabilities while the abstract description of data
structures and application logic realizes a persistent and platform-independent representation of
programs. The advantages of traverser representation through Semantic Reflection are
elaborated. Finally, an editing tool is presented that enables developers to visualize and modify
the semantic networks which are used to describe the application.

Keywords: Intelligent Virtual Environment, Semantic Network, Semantic Traverser, Knowledge
Based Simulation, Data Flow Processes

1 Introduction

Today’s simulation frameworks for Virtual and Augmented Reality (VR/AR) require complex
data models. As demands for such applications are constantly increasing, additional features are
incorporated to intensify immersion or to create believable interactive worlds. Such features
include perceivable simulation aspects like sound systems, physical simulations, speech
processing and multimodal input as well as technical matters like distributed rendering. On top
of that, application logic and a multitude of Artificial Intelligence (AI) methods have been

integrated into simulation frameworks by means of field routing, decision trees, planning and
reasoning mechanisms. Each of these features requires a specially tailored model to maintain its
data effectively. Simulation frameworks can be either monolithic, offering a fixed set of features,
or modular, ensuring extensibility. In both approaches the data models of different modules must
be combined at some point.
Traditional visualization toolkits, for example OpenSG [ReiVoBe02] and OpenGL Performer
[RohHe94], use scene graphs as a central data model. This was adopted by VR-specific
development tools (FlowVR [AllGoLe04], AVANGO [Tra99]) and enhanced by powerful data
flow features like field routing, messaging and event systems working within or on the scene
graph. While this is sufficient for applications centered around visualization and unimodal input
through pointing devices or gestures, various ideas have been presented which provide
alternative advanced methods for application layout and modeling [LatFrWe06] [CavPa00]
[KaChMo06] of Intelligent Virtual Environments (IVEs) [AylLu00].
Our latest research on this topic introduced the concept of Semantic Reflection [LatFr07],
combining the concept of semantic representation and the traditional principle of reflection
known from object oriented programming (OOP). Application logic, knowledge bases or scene
graphs are combined in a unified representation based on a semantic network (see section 2)
without forcing different modules of a simulation framework to give up their own data models
[LatFrWe06]. This semantic network is used as a Knowledge Representation Layer (KRL) and
enables developers to create reusable and parameterizable representations of applications and
data. In addition, the network is independent of programming languages and abstractly describes
an application that is consistent across different computer systems. The essential elements of the
application are made persistent for long-time usage and to overcome varying system
requirements.
The work presented here introduces an additional abstraction concept called Semantic Traversers
(STs, see section 3) that is targeted at a unified description of algorithmic processes working on
the KRL. Traversers operate within the semantic context that is given by the KRL and have a
semantic representation in the KRL themselves. This enables simulation modules as well as STs
to consider actions of other traversers in their decisions, based on the reflected properties.
Furthermore, software developers using the semantic description of components are able to
debug and optimize applications more easily.
In the following sections we explain how such a unified representation is achieved, without
impeding the use of traditional programming approaches at the same time. The utilization of STs
is illustrated inside a multimodal virtual construction environment called Virtuelle Werkstatt
[BiJuLa02]. We will also present a tool that allows user-centered interaction with the given high-
level abstract data model.

2 Using semantic networks as a KRL

After elaborating a suitable database system to incorporate all required features from VR tools
and AI systems [LatSc03] [HeuScLa05], the semantic network [Brach79] was chosen as a

general data exchange facility. A semantic network’s data structures are nodes and relations. The
former usually denote concepts representing abstract knowledge or objects which are instances.
Relations are directed and labeled, connecting the nodes to create their semantic context and
eventually the knowledge base. An example taken from a virtual construction scenario is shown
in Figure 1. To cope with the challenges of current and future VR/AR systems the semantic
network formalism was extended. The main aspects of this extension are a frame-like
[Minsky74] node structure and the consequent use of a domain concept. The latter is useful for
maintaining nodes from many different simulation modules, data- and knowledge bases. Both of
these extensions are outlined below. A third extension lifts relations to first order objects by
allowing them to be connected by other relations.

Figure 1: A simple semantic network excerpt depicting a finite state machine for a single part
used inside a Virtual Reality construction scenario. The part can be selected and then deleted or
unselected. Appropriate actions are connected to the respective nodes. Conditions and hierarchy
nodes are hidden. Nodes from different subdomains are shaded differently.

Based on the AI concept of frames, nodes can have attributes or slots which represent additional
properties not modeled in the semantic network. This frame-like structure enables nodes to
contain application- and programming-specific data which cannot be described by a semantic
network efficiently for use in simulations. This includes text strings, numbers, 2D images or
point lists from complex 3D models which do not contain semantic annotations. These slots are
represented by a name and a corresponding value, which can be of any type.
Another benefit of graph based models is the intuitive representation that is easily
understandable by humans. To preserve this advantage, while working with complex semantic
networks containing hundreds or thousands of nodes, a grouping and selection mechanism must
be integrated. The notion of subdomains was introduced into the semantic net by means of
Semantic Reflection itself (see Figure 2). Instead of a grouping mechanism that is hardcoded into
the implementation of our semantic net, the membership of nodes to different subdomains is
indicated by one or more “belongs_to” relations which link them to nodes representing the
corresponding subdomains. Subdomains provide a commonly found concept used in modern

database systems and software architectures called a view [ElNa00]. Views in the KRL allow
designers to concentrate on their task by masking out unnecessary portions of the semantic net.
They are also used to group data structures from different simulation modules logically and to
make complex network structures readable and comprehensible for humans [LatSc03]
[HeuScLa05] [LatFr07].
Having assembled an adequate representation, the next step was to create reusable routines
working on ontologies and knowledge bases described by the semantic network. Such routines
are called Semantic Traversers and their development and use is explained in more detail in the
following section.

Figure 2: Subdomains of a semantic network in a VR scenario. This concept allows the
arrangement of nodes into logical groups. The membership is realized through the „belongs_to“
relation. The colors of nodes indicate the subdomains they are in. At the top, scene knowledge is
shown, containing information on a specific table inside the scenario. Abstract knowledge about
tables in general is located in the lower part.

3 Semantic Traversers

3.1 General properties of Semantic Traversers

The central routines working on the semantic network are Semantic Traversers. As the name
“traverser” suggests, these programs work their way along nodes and relations while reading and
writing attributes and assembling results as partial semantic networks. They can also create new

relations and nodes inside the semantic network they are working on. Thereby STs are able to
expose new knowledge and semantic relations between existing abstract concepts and concrete
objects.
Following the idea of Semantic Reflection, each traverser is represented as a node or a set of
nodes in the semantic net. This has several benefits. By integrating traverser objects into the
knowledge base their access encompasses all semantically reflected objects and module-related
data, including the other STs and their processing results. Hence, interface specification between
cooperating or dependent STs is reduced to a minimum. The position of traversers can be
visualized and their behavior is visible which simplifies debugging and prototyping of programs
and STs.
Semantic Traversers provide a straightforward representation of their current and preceding
actions. Depending on the level of Semantic Reflection that the developer wants to achieve, STs
can create a detailed trail of their actions or just indicate their current position and status inside
the semantic net. For collections of similar traversers working on the same set of nodes, the trails
should be detailed enough to distinguish between the effects of different traversers. Highly
collaborative traversers must also provide hints for other traversers or programs that may use the
knowledge base. Traverser routines can become complex applications and perform knowledge-
based operations for VR/AR systems on the given networks.
The use of subroutines, classes and developed libraries have become the foundation of classical
programming. Hence, we adopted this concept for the STs on the presented semantic networks to
provide established approaches in addition to the new Semantic Reflection paradigm.
By using a low-level C++ implementation for the STs and for the semantic network, real-time
applicability for VR/AR environments is preserved. The general ST interface is very compact:

Class Traverser

1 Traverser(bool debuggingEnabled)
2 SemNet applyTo(SemNet execDom, SemNet krl)
3 SemNet applyTo(Node n, SemNet krl, SemNet context = 0, SemNet metaInfo = 0)

A traverser is applied to a node or an execution domain. If a traverser does not start its operation
at a specific node, the latter is used. In most other cases, a node and the knowledge
representation layer are passed to the traverser. In addition, context information and meta
information can be passed to a traverser. Implemented traversers hold the names of the relations
they work with as constants to improve consistency and documentation.
The individual behavior of STs depends on the domain of application, but they follow a general
pattern. STs have a specific set of relation types which are followed. The designated nodes are
then checked for their type and specific STs are applied w.r.t. the node type. If no STs exist for
the respective node type, node attributes and other semantic information is used to assemble the
result or to arrange the next traversals.
In the following we will present a set of basic traverser routines which have been subsequently
developed and tested. They offer simple usage and further provide the means to synthesize
application logic or data flow constructs.

3.2 Traverser manager

To manage the multitude of traversers which simultaneously acts on a semantic network, a
traverser manager was developed. Figure 3 shows the manager which is semantically reflected
and maintains traverser instances and relations to them. To utilize a traverser, the manager is
queried and then returns the necessary reference.

Figure 3: The traverser manager can reference all traversers and is responsible for the
instantiation and administration of active and inactive traversers.

3.3 Type hierarchy traverser

A type hierarchy traverser is a traverser that performs basic type checking or type collection
tasks. The relations it uses are the two classical AI relations “is_a” and “instance_of”. It is
assigned to a node to search for a specific parent type (checking if a given node is of the type
“C++ function”) or to collect all parent types of a node in a resulting semantic network. Two
more useful search types have been realized. This traverser accounts for tasks which correspond
to those of runtime-type systems (RTTS) and is utilized by almost all traversers. It is a
foundation of knowledge-driven access to concepts, objects, properties and ontologies, since the
type of a node restricts the actions which can be performed with it. The type traverser
functionality is described by the following pseudo code fragment, when passing a specific
starting search node, a KRL and a semantic context network to it:

Function applyTo

Input: search start node (node), Knowledge Representation Layer (krl), context network
(context)

Output: Semantic network containing all nodes which are found by the type traverser w.r.t. the
search type (result)

1 Function: applyTo(node, krl, context)
2 begin

3 Get search type from context
4 Connect this traverser and search start node with relation “checking_type”
5 foreach node that is reached from the start node through „inst_of” or „is_a“ relations do
6 if current node is not marked as visited by this traverser then
7 Connect current node and this traverser with relation „visited_by“
8 switch search type do
9 case FIND FIRST SUPERTYPE
10 Add current node to result
11 Return result
12 case FIND FUNDAMENTAL SUPERTYPE
13 if current node has no outgoing “is_a” and “inst_of” relations then
14 Add current node to result
15 end
16 case FIND ALL
17 Add current node to result
18 end
19 case FIND SPECIFIC TYPE
20 if current node has SPECIFIC TYPE then
21 Add current node to result
22 Return result
23 end switch
24 end if
25 end foreach
26 end

3.4 Function traverser

The function traverser can be applied to an executable node. This means it is a subtype of
“function”. The traverser checks for the corresponding programming language and then assigns
an appropriate Semantic Traverser to conduct the actual function execution.
An active type traverser that checks a C++-function node is shown in Figure 4. The traverser is
checking the node “playSelectionSound” for its type to utilize an adequate ST. In this case it
would be the C function traverser (see next section).

3.5 C function traverser

Figure 4 depicts a semantic network that can be traversed by a specialized C function traverser
to execute functions from the C and C++ programming languages. The used functions can be
imported from arbitrary libraries by connecting the function node to a specific library node. This
includes very simple functions with no results and parameters as well as ones with multiple
arguments and default arguments. The result of the executed function is returned by the traverser
inside a node, using the previously explained slot system. By coupling parameter to result nodes

they can be used as parameters for following functions the same way they can be combined in
classical programming.

Figure 4: A function call ontology that is used by the semantic C function traverser. The two
nodes „playDeleteSound“ and „playSelectSound“ are two calls of the same function with
different parameters (e.g. a sound file). They are executed in the finite state machine shown in
Figure 1. Parameter and result nodes are omitted.

3.6 Semantic network function traverser

A semantic network function traverser performs actions on the semantic network itself. It can
instantiate, delete and modify nodes and relations and alter slot information of nodes, thus
closing the loop to full Semantic Reflection. By using this traverser, one can use the semantic
network to modify itself. Though it would be possible for other traversers to perform all of their
actions on the semantic net through this traverser, for performance and comfort reasons they
usually don’t.

3.7 Condition traverser

The condition traverser can be applied to a node to check for conditions at certain points in the
control flow of an application. It collects type information of condition nodes, which might be
nested through logical operations like AND, NOT and OR. At these nodes, functions are executed
and their results combined to return the final state of the condition. If the conditions are fulfilled,
an associated function node will be executed.

3.8 Finite state machine traverser

Finally, a state machine traverser was developed as a case study to test and demonstrate the
traverser routines mentioned above. It combines the different tasks of the basic traversers to
realize a well-known behavior model of AI [Mill06]. This traverser can operate on a semantic
network similar to Figure 1.

3.9 Traverser for multimodal interaction in virtual environments

The temporary Augmented Transition Network (tATN) [Lato02] is a core component for
multimodal interaction inside the Virtuelle Werkstatt. The integration of speech and gesture input
into VR/AR simulations is a key element in creating immersive experiences. We migrated the
existing ATN into the semantic network that makes up the KRL. Afterwards, an ST was
developed that implemented the functionality of the existing library. This Semantic tATN
Traverser can now be used as one module of a complex VR application to realize multimodal
interaction.
Additional Semantic Traversers which implement further classic AI methods are developed in
ongoing works at our lab. These traversers include field routing algorithms, decision trees, path
planning (A* with interchangeable heuristics) and neuroinformatic learning approaches like
artificial neural networks. A scripting interface for traversers and our semantic network
implementation has been made available as well.
By creating a modular set of traversers, that uses the semantic net as its primary data structure, it
is possible to create application logic ranging from simple AI methods to Intelligent Virtual
Environments. The application can use the semantic network as a knowledge database and
module connector. This supports homogeneous design and greatly simplifies debugging.
Furthermore, it enables developers to focus on very few tools without requiring in-depth
knowledge of programming techniques, as we shall see in the next sections.

4 Modeling Traversers with Semantic Reflection

An additional major strength of Semantic Reflection as a design principle is its intuitive usage.
Semantically reflected applications or routines already incorporate a visualization and thus it is
very easy for human minds to comprehend relations between abstract concepts and objects.
Moreover, there are various visualization schemes which enable humans to see patterns which
would not be found as easily when using linear rules [Sowa87].
Following a simple concept, Semantic Reflection can be achieved for traversers by providing as
much meaningful information to the knowledge base as is available. It is possible to reflect
internal variables of routines inside the semantic network, but its usefulness is limited if no
knowledge- or simulation related actions are performed with them.
The different subdomains and their respective nodes should be chosen to reflect the distinct
partitioning given by the data of different modules, general knowledge bases, lexical databases
and other components which are used in the simulation.
Careful consideration must be given to the creation of new ontologies and traverser types, as the
use of relation types like “executes”, “is_a” and “followed_by” should be consistent throughout
the whole knowledge base and traverser hierarchy. When working with an appropriate editing
tool and existing ontologies, such problems are solved by creating the necessary ontology links
automatically (see section 5). The documentation of existing and future Semantic Traversers
explains the relation types and their use inside the traversers.

Though Semantic Reflection is strongly encouraged, it is not enforced by the chosen approach.
This leaves experienced designers the choice to use any combination of programming techniques
and existing libraries or toolkits. Semantic Traversers can easily communicate through the same
or even different semantic networks. But if required, they might also be interconnected by
another top level application that controls them and manages data interchange between their
routines directly.
Multiple functions of one programming language being subsequently called by using different
nodes of the semantic network could be replaced by combining them into one function call that
invokes all of the other functions. Apparently leaving the concept of Semantic Reflection at this
point would have drawbacks, as it is more difficult to reflect system changes in the knowledge
base with a monolithic function call. Furthermore, successive function calls from different
programming languages are only a matter of available traversers in our system while it would
require external libraries and cautious design otherwise.
We have illustrated the principles of designing knowledge bases and Semantic Traversers based
on Semantic Reflection. In the next section we will specify the requirements which arise from
these principles. We will also present a tool that combines the necessary functions to form a
simple and powerful editor to interact with the enriched semantic networks which we have
developed.

5 Creating an adequate editing tool

The full potential of Semantic Reflection is utilized by offering a proper visualization and editing
software. With such a tool it is easy to incorporate application data and logic into the knowledge
base. The illustration of program flow enhances debugging capabilities as well as it allows an
easy understanding of application logic. Simultaneous editing features make it possible to test
and reconfigure applications or VR/AR simulations at runtime. For example, a single change of
one relation can then toggle between two completely different sets of simulation modules.
The respective tool developed is depicted in Figure 5. It provides intuitive visualization as well
as simple usage to support work with a diversity of different ontologies and concepts.
Instantiation of abstract concepts to concrete objects is accompanied by selection and grouping
features to store existing and new elements inside subdomains and nodes. Selection, duplication,
deletion and movement of nodes and relations follow common interface rules.
Basic ontologies are loaded into a repository. Concepts and object templates can then be dragged
into the workspace where the necessary connections are created automatically. Such ontologies
and templates are created as semantic networks with the same editor.
The editor facilitates editing of static semantic networks to create applications. In addition, an
active semantic network inside a running application may be passed to the editor to allow
keeping track of the system state and its data flow. It is possible to modify running processes by
changing variable values as known from debugging tools. To improve virtual prototyping efforts,
changing the whole application architecture during runtime can also be achieved in our
approach.

Figure 5: The semantic network editor. This screenshot displays a sample network loaded and
arranged by an early version of the editor. Selected nodes and relations are dotted and animated.
A thick, red relation indicates it is being traversed.

6 Conclusion

By offering a general and intuitive representation of application logic, scene graphs and a
diversity of simulation-related module data, the development of IVEs is significantly simplified.
Semantic Traversers provide the basic routines to create such a representation and perform
calculations on it while implementing the principle of Semantic Reflection.
This formalism allows the creation of long-term-usable applications which are described in an
abstract manner. The semantic representation is platform-independent and easily modified
without requiring knowledge of specific programming languages. Reusable traversers offer
parameterizable access to the semantic network.
Extensibility is ensured by a common and unrestricted interface to all components. This interface
is the KRL. It is also possible to integrate proprietary software into the framework to permit
usage of existing libraries.
The versatility of STs was shown in several examples. These examples covered simple AI
routines as well as complex multimodal integration modules for VR/AR simulations.
To create and maintain large scale Virtual Reality environments and intelligent agents, a suitable
tool was presented that handles and visualizes the necessary data structures.

References

[AllGoLe04] Allard, J., Gouranton, V., Lecointre, L., Limet, S., Melin, E., Raffin, B., Robert,
S.: FlowVR: a Middleware for Large Scale Virtual Reality Applications. Proc. of
Euro-par 2004, pp. 497-505, Pisa, Italia, 2004.

[AylLu00] Aylett, R., Luck, M.: Applying Artificial Intelligence to VR: Intelligent Virtual
Environments. Applied Artificial Intelligence, Volume 14(1), pp. 3-32, 2000.

[BiJuLa02] Biermann, P., Jung, B., Latoschik, M.E., Wachsmuth, I.: Virtuelle Werkstatt: A
Platform for Multimodal Assembly in VR. Proceedings of the fourth Virtual
Reality International Conference (VRIC 2002), pp. 53-62, Laval, France, 2002.

[Brach79] Brachman, J. R.: On the epistemological status of semantic networks. Associative
Networks, (Ed. Findler, N. V.), pp. 3-50, Academic Press, New York, 1979.

[CavPa00] Cavazza, M., Palmer, I.: High-Level Interpretation in Dynamic Virtual
Environments. Applied Artificial Intelligence, Volume 14(1), pp. 125-144, 2000.

[ElNa00] Elmasri, R., Navathe, S. B.: Fundamentals of Database Systems, 3rd edition,
Addison Wesley Longman, 2000.

[HeuScLa05] Heumer, G., Schilling, M., Latoschik, M. E.: Automatic Data Exchange and
Synchronization for Knowledge-Based Intelligent Virtual Environments.
Proceedings of the IEEE VR, pp. 43-50, Bonn, Germany, 2005.

[KaChMo06] Kalogerakis, E., Christodoulakis, S., Moumoutzis, Nektarios: Coupling Ontolo-
gies with Graphics Content for Knowledge Driven Visualization. VR '06: Proc. of
the IEEE conference on Virtual Reality, pp. 43-50, Washington, DC, 2006.

[LatFr07] Latoschik, M. E., Fröhlich, C.: Towards Intelligent VR: Multi-Layered Semantic
Reflection for Intelligent Virtual Environments. Proceedings of the Graphics and
Applications 2007, pp. 249-259, Barcelona, Spain, 2007.

[LatFrWe06] Latoschik, M. E., Fröhlich, C., Wendler, A.: Scene Synchronization in Close
Coupled World Representations using SCIVE. The International Journal of Virtual
Reality, Volume 5(3), pp. 47-52, 2006.

[Lato02] Latoschik, M. E.: Designing Transition Networks for Multimodal VR-Interactions
Using a Markup Language. Proceedings of the 4th IEEE International Conference
on Multimodal Interfaces ICMI, pp. 411-416, Pittsburgh, Pennsylvania, 2002.

[LatSc03] Latoschik, M. E., Schilling, M.: Incorporating VR Databases into AI Knowledge
Representations: A Framework for Intelligent Graphics Applications. Proc. of the
6th International Conference on Computer Graphics and Imaging, pp. 79-84, 2003.

[Mill06] Millington, I.: Artificial Intelligence for Games. 1st edition, Morgan-Kaufmann,
SF, CA, 2006.

[Minsky74] Minsky, M.: A Framework for Representing Knowledge. AI Memo 306, MIT AI
Laboratory, Cambridge, 1974.

[ReiVoBe02] Reiners, D., Voss, G., Behr, J.: OpenSG: Basic concepts. 1. OpenSG Symposium,
www.opensg.org/OpenSGPLUS/symposium/Papers2002/Reiners_Basics.pdf, 2002.

[RohHe94] Rohlf, J., Helman, J.: IRIS performer: a high performance multiprocessing toolkit
for real-time 3D graphics. SIGGRAPH '94: Proc. of the 21st annual conference on
Computer graphics and interactive techniques, pp. 381-394, New York, NY, 1994.

[Sowa87] Sowa, J. F: Semantic Networks. Encyclopedia of Artificial Intelligence, (Ed.
Shapiro, S.C.), Wiley and Sons, New York, 1987.

[Tra99] Tramberend, H.: AVOCADO - A distributed Virtual Environment Framework.
Proceedings of IEEE Virtual Reality 1999, pp. 14-21, Houston, Texas, 1999.

http://www.opensg.org/OpenSGPLUS/symposium/Papers2002/Reiners_Basics.pdf

	1 Introduction
	2 Using semantic networks as a KRL
	3 Semantic Traversers
	3.1 General properties of Semantic Traversers
	3.2 Traverser manager
	3.3 Type hierarchy traverser
	3.4 Function traverser
	3.5 C function traverser
	3.6 Semantic network function traverser
	3.7 Condition traverser
	3.8 Finite state machine traverser
	3.9 Traverser for multimodal interaction in virtual environments

	4 Modeling Traversers with Semantic Reflection
	5 Creating an adequate editing tool
	6 Conclusion

