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Abstract: This  article  introduces  the  concept  of  Semantic  Traversers  (STs)  and exemplarily 
illustrates its utilization inside a Virtual Reality (VR) platform for multimodal construction. The 
development  of  reusable  and  parameterizable  routines  which  are  based  on  the  concept  of 
Semantic Reflection is described. These routines work on the Knowledge Representation Layer 
(KRL) of a simulation framework to realize complex application logic and data flow concepts 
like field routing. The KRL is implemented by a functionally extended semantic network. The 
ST development in C++ preserves real-time capabilities while the abstract description of data 
structures and application logic realizes a persistent and platform-independent representation of 
programs.  The  advantages  of  traverser  representation  through  Semantic  Reflection  are 
elaborated. Finally, an editing tool is presented that enables developers to visualize and modify 
the semantic networks which are used to describe the application.
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1 Introduction

Today’s simulation frameworks  for Virtual and Augmented Reality (VR/AR) require complex 
data models. As demands for such applications are constantly increasing, additional features are 
incorporated  to  intensify  immersion or to  create  believable  interactive  worlds.  Such features 
include  perceivable  simulation  aspects  like  sound  systems,  physical  simulations,  speech 
processing and multimodal input as well as technical matters like distributed rendering. On top 
of  that,  application  logic  and  a  multitude  of  Artificial  Intelligence  (AI)  methods  have  been 



integrated into simulation frameworks by means of field routing, decision trees, planning and 
reasoning mechanisms. Each of these features requires a specially tailored model to maintain its 
data effectively. Simulation frameworks can be either monolithic, offering a fixed set of features, 
or modular, ensuring extensibility. In both approaches the data models of different modules must 
be combined at some point.
Traditional visualization toolkits,  for example  OpenSG [ReiVoBe02] and OpenGL Performer 
[RohHe94],  use  scene  graphs  as  a  central  data  model.  This  was  adopted  by  VR-specific 
development tools (FlowVR [AllGoLe04], AVANGO [Tra99]) and enhanced by powerful data 
flow features like field routing, messaging and event systems working within or on the scene 
graph. While this is sufficient for applications centered around visualization and unimodal input 
through  pointing  devices  or  gestures,  various  ideas  have  been  presented  which  provide 
alternative  advanced  methods  for  application  layout  and  modeling  [LatFrWe06]  [CavPa00] 
[KaChMo06] of Intelligent Virtual Environments (IVEs) [AylLu00].
Our  latest  research  on  this  topic  introduced  the  concept  of  Semantic  Reflection  [LatFr07], 
combining  the  concept  of  semantic  representation  and  the  traditional  principle  of  reflection 
known from object oriented programming (OOP). Application logic, knowledge bases or scene 
graphs are combined in a unified representation based on a semantic network (see section 2) 
without forcing different modules of a simulation framework to give up their own data models 
[LatFrWe06]. This semantic network is used as a Knowledge Representation Layer (KRL) and 
enables developers to create reusable and parameterizable representations of applications and 
data. In addition, the network is independent of programming languages and abstractly describes 
an application that is consistent across different computer systems. The essential elements of the 
application  are  made  persistent  for  long-time  usage  and  to  overcome  varying  system 
requirements.
The work presented here introduces an additional abstraction concept called Semantic Traversers 
(STs, see section 3) that is targeted at a unified description of algorithmic processes working on 
the KRL. Traversers operate within the semantic context that is given by the KRL and have a 
semantic representation in the KRL themselves. This enables simulation modules as well as STs 
to  consider  actions  of  other  traversers  in  their  decisions,  based  on  the  reflected  properties. 
Furthermore,  software  developers  using  the  semantic  description  of  components  are  able  to 
debug and optimize applications more easily.
In the following sections we explain how such a  unified representation  is  achieved,  without 
impeding the use of traditional programming approaches at the same time. The utilization of STs 
is  illustrated  inside  a  multimodal  virtual  construction  environment  called  Virtuelle  Werkstatt  
[BiJuLa02]. We will also present a tool that allows user-centered interaction with the given high-
level abstract data model.

2 Using semantic networks as a KRL

After elaborating a suitable database system to incorporate all required features from VR tools 
and  AI  systems  [LatSc03]  [HeuScLa05],  the  semantic  network  [Brach79]  was  chosen  as  a 



general data exchange facility. A semantic network’s data structures are nodes and relations. The 
former usually denote concepts representing abstract knowledge or objects which are instances. 
Relations are directed and labeled, connecting the nodes to create their semantic context and 
eventually the knowledge base. An example taken from a virtual construction scenario is shown 
in  Figure 1. To cope with the challenges of current and future VR/AR systems the semantic 
network  formalism  was  extended.  The  main  aspects  of  this  extension  are  a  frame-like 
[Minsky74] node structure and the consequent use of a domain concept. The latter is useful for 
maintaining nodes from many different simulation modules, data- and knowledge bases. Both of 
these extensions are outlined below. A third extension lifts relations to first order objects by 
allowing them to be connected by other relations.

Figure  1: A simple semantic network excerpt depicting a finite state machine for a single part 
used inside a Virtual Reality construction scenario. The part can be selected and then deleted or 
unselected. Appropriate actions are connected to the respective nodes. Conditions and hierarchy 
nodes are hidden. Nodes from different subdomains are shaded differently.

Based on the AI concept of frames, nodes can have attributes or slots which represent additional 
properties  not  modeled  in  the  semantic  network.  This  frame-like  structure  enables  nodes  to 
contain application- and programming-specific data which cannot be described by a semantic 
network efficiently for use in simulations. This includes text strings, numbers, 2D images or 
point lists from complex 3D models which do not contain semantic annotations. These slots are 
represented by a name and a corresponding value, which can be of any type.
Another  benefit  of  graph  based  models  is  the  intuitive  representation  that  is  easily 
understandable by humans. To preserve this advantage, while working with complex semantic 
networks containing hundreds or thousands of nodes, a grouping and selection mechanism must 
be integrated.  The notion of  subdomains  was introduced into the semantic  net  by means  of 
Semantic Reflection itself (see Figure 2). Instead of a grouping mechanism that is hardcoded into 
the implementation of our semantic net, the membership of nodes to different subdomains is 
indicated  by one or  more  “belongs_to”  relations  which  link them to nodes  representing  the 
corresponding subdomains.  Subdomains provide a commonly found concept  used in modern 



database systems and software architectures called a  view  [ElNa00]. Views in the KRL allow 
designers to concentrate on their task by masking out unnecessary portions of the semantic net. 
They are also used to group data structures from different simulation modules logically and to 
make  complex  network  structures  readable  and  comprehensible  for  humans  [LatSc03] 
[HeuScLa05] [LatFr07].
Having assembled  an  adequate  representation,  the  next  step  was  to  create  reusable  routines 
working on ontologies and knowledge bases described by the semantic network. Such routines 
are called Semantic Traversers and their development and use is explained in more detail in the 
following section.

Figure  2:  Subdomains  of  a  semantic  network  in  a  VR  scenario.  This  concept  allows  the 
arrangement of nodes into logical groups. The membership is realized through the „belongs_to“ 
relation. The colors of nodes indicate the subdomains they are in. At the top, scene knowledge is 
shown, containing information on a specific table inside the scenario. Abstract knowledge about 
tables in general is located in the lower part.

3 Semantic Traversers

3.1 General properties of Semantic Traversers

The  central routines working on the semantic network are Semantic Traversers. As the name 
“traverser” suggests, these programs work their way along nodes and relations while reading and 
writing attributes and assembling results as partial semantic networks. They can also create new 



relations and nodes inside the semantic network they are working on. Thereby STs are able to 
expose new knowledge and semantic relations between existing abstract concepts and concrete 
objects.
Following the idea of  Semantic Reflection, each traverser is represented as a node or a set of 
nodes in the semantic net. This has several benefits. By integrating traverser objects into the 
knowledge base their access encompasses all semantically reflected objects and module-related 
data, including the other STs and their processing results. Hence, interface specification between 
cooperating  or  dependent  STs  is  reduced  to  a  minimum.  The  position  of  traversers  can  be 
visualized and their behavior is visible which simplifies debugging and prototyping of programs 
and STs.
Semantic  Traversers  provide  a  straightforward  representation  of  their  current  and  preceding 
actions. Depending on the level of Semantic Reflection that the developer wants to achieve, STs 
can create a detailed trail of their actions or just indicate their current position and status inside 
the semantic net. For collections of similar traversers working on the same set of nodes, the trails 
should  be  detailed  enough  to  distinguish  between  the  effects  of  different  traversers.  Highly 
collaborative traversers must also provide hints for other traversers or programs that may use the 
knowledge base. Traverser routines can become complex applications and perform knowledge-
based operations for VR/AR systems on the given networks.
The use of subroutines, classes and developed libraries have become the foundation of classical 
programming. Hence, we adopted this concept for the STs on the presented semantic networks to 
provide established approaches in addition to the new Semantic Reflection paradigm.
By using a low-level C++ implementation for the  STs and for the semantic network, real-time 
applicability for VR/AR environments is preserved. The general ST interface is very compact:

Class Traverser

1     Traverser(bool debuggingEnabled)
2     SemNet applyTo(SemNet execDom, SemNet krl)
3     SemNet applyTo(Node n, SemNet krl,  SemNet context = 0, SemNet metaInfo = 0)

A traverser is applied to a node or an execution domain. If a traverser does not start its operation 
at  a  specific  node,  the  latter  is  used.  In  most  other  cases,  a  node  and  the  knowledge 
representation  layer  are  passed  to  the  traverser.  In  addition,  context  information  and  meta 
information can be passed to a traverser. Implemented traversers hold the names of the relations 
they work with as constants to improve consistency and documentation.
The individual behavior of STs depends on the domain of application, but they follow a general 
pattern. STs have a specific set of relation types which are followed. The designated nodes are 
then checked for their type and specific STs are applied w.r.t. the node type. If no STs exist for 
the respective node type, node attributes and other semantic information is used to assemble the 
result or to arrange the next traversals.
In the following we will present a set of basic traverser routines which have been subsequently 
developed and tested.  They  offer  simple  usage  and further  provide  the  means  to  synthesize 
application logic or data flow constructs.



3.2 Traverser manager

To manage the  multitude of  traversers  which  simultaneously  acts  on a  semantic  network,  a 
traverser manager was developed. Figure 3 shows the manager which is semantically reflected 
and maintains traverser instances and relations to them. To utilize a traverser, the manager is 
queried and then returns the necessary reference.

Figure 3: The traverser manager can reference all traversers and is responsible for the 
instantiation and administration of active and inactive traversers.

3.3 Type hierarchy traverser

A type hierarchy traverser is a traverser that performs basic type checking or type collection 
tasks.  The relations  it  uses are  the two classical  AI relations  “is_a” and “instance_of”.  It  is 
assigned to a node to search for a specific parent type (checking if a given node is of the type 
“C++ function”) or to collect all parent types of a node in a resulting semantic network. Two 
more useful search types have been realized. This traverser accounts for tasks which correspond 
to  those  of  runtime-type  systems  (RTTS)  and  is  utilized  by  almost  all  traversers.  It  is  a 
foundation of knowledge-driven access to concepts, objects, properties and ontologies, since the 
type  of  a  node  restricts  the  actions  which  can  be  performed  with  it.  The  type  traverser 
functionality  is  described  by  the  following  pseudo  code  fragment,  when  passing  a  specific 
starting search node, a KRL and a semantic context network to it:

Function applyTo

Input: search  start  node  (node),  Knowledge  Representation  Layer  (krl),  context  network 
(context)

Output: Semantic network containing all nodes which are found by the type traverser w.r.t. the 
search type (result)

1 Function: applyTo(node, krl, context)
2 begin



3     Get search type from context
4     Connect this traverser and search start node with relation “checking_type”
5     foreach node that is reached from the start node through „inst_of” or „is_a“ relations do
6         if current node is not marked as visited by this traverser then
7             Connect current node and this traverser with relation „visited_by“
8             switch search type do
9                 case FIND FIRST SUPERTYPE
10                     Add current node to result
11                     Return result
12                 case FIND FUNDAMENTAL SUPERTYPE
13                     if current node has no outgoing “is_a” and “inst_of” relations then
14                         Add current node to result
15                 end
16                 case FIND ALL
17                     Add current node to result
18                 end
19                 case FIND SPECIFIC TYPE
20                     if current node has SPECIFIC TYPE then
21                         Add current node to result
22                         Return result
23             end switch
24         end if
25     end foreach
26 end

3.4 Function traverser

The  function traverser can be applied to  an executable  node.  This means it  is  a subtype of 
“function”. The traverser checks for the corresponding programming language and then assigns 
an appropriate Semantic Traverser to conduct the actual function execution.
An active type traverser that checks a C++-function node is shown in Figure 4. The traverser is 
checking the node “playSelectionSound” for its type to utilize an adequate ST. In this case it 
would be the C function traverser (see next section).

3.5 C function traverser

Figure 4 depicts a semantic network that can be traversed by a specialized C function traverser 
to execute functions from the C and C++ programming languages. The used functions can be 
imported from arbitrary libraries by connecting the function node to a specific library node. This 
includes very simple functions with no results  and parameters as well  as ones with multiple 
arguments and default arguments. The result of the executed function is returned by the traverser 
inside a node, using the previously explained slot system. By coupling parameter to result nodes 



they can be used as parameters for following functions the same way they can be combined in 
classical programming.

Figure  4: A function call ontology that is used by the semantic  C function traverser. The two 
nodes  „playDeleteSound“  and  „playSelectSound“  are  two  calls  of  the  same  function  with 
different parameters (e.g. a sound file). They are executed in the finite state machine shown in 
Figure 1. Parameter and result nodes are omitted.

3.6 Semantic network function traverser

A semantic network function traverser performs actions on the semantic network itself. It can 
instantiate,  delete  and  modify  nodes  and  relations  and  alter  slot  information  of  nodes,  thus 
closing the loop to full Semantic Reflection. By using this traverser, one can use the semantic 
network to modify itself. Though it would be possible for other traversers to perform all of their 
actions on the semantic net through this  traverser, for performance and comfort reasons they 
usually don’t.

3.7 Condition traverser

The condition traverser can be applied to a node to check for conditions at certain points in the 
control flow of an application. It collects type information of condition nodes, which might be 
nested through logical operations like AND, NOT and OR. At these nodes, functions are executed 
and their results combined to return the final state of the condition. If the conditions are fulfilled, 
an associated function node will be executed.

3.8 Finite state machine traverser

Finally, a  state machine traverser was developed as a case study to test and demonstrate the 
traverser  routines mentioned above. It  combines the different tasks of the basic  traversers to 
realize a well-known behavior model of AI [Mill06]. This traverser can operate on a semantic 
network similar to Figure 1.



3.9 Traverser for multimodal interaction in virtual environments

The  temporary  Augmented  Transition  Network  (tATN)  [Lato02]  is  a  core  component  for 
multimodal interaction inside the Virtuelle Werkstatt. The integration of speech and gesture input 
into VR/AR simulations is a key element in creating immersive experiences. We migrated the 
existing  ATN  into  the  semantic  network  that  makes  up  the  KRL.  Afterwards,  an  ST  was 
developed  that  implemented  the  functionality  of  the  existing  library.  This  Semantic  tATN 
Traverser can now be used as one module of a complex VR application to realize multimodal 
interaction.
Additional Semantic Traversers which implement further classic AI methods are developed in 
ongoing works at our lab. These traversers include field routing algorithms, decision trees, path 
planning  (A*  with  interchangeable  heuristics)  and  neuroinformatic  learning  approaches  like 
artificial  neural  networks.  A  scripting  interface  for  traversers  and  our  semantic  network 
implementation has been made available as well.
By creating a modular set of traversers, that uses the semantic net as its primary data structure, it 
is  possible  to  create application logic ranging from simple  AI methods to Intelligent  Virtual 
Environments.  The  application  can  use  the  semantic  network  as  a  knowledge  database  and 
module  connector.  This  supports  homogeneous  design  and  greatly  simplifies  debugging. 
Furthermore,  it  enables  developers  to  focus  on  very  few  tools  without  requiring  in-depth 
knowledge of programming techniques, as we shall see in the next sections.

4 Modeling Traversers with Semantic Reflection

An additional major strength of Semantic Reflection as a design principle is its intuitive usage. 
Semantically reflected applications or routines already incorporate a visualization and thus it is 
very easy  for  human minds  to  comprehend relations between abstract  concepts  and objects. 
Moreover, there are various visualization schemes which enable humans to see patterns which 
would not be found as easily when using linear rules [Sowa87]. 
Following a simple concept, Semantic Reflection can be achieved for traversers by providing as 
much meaningful  information to  the knowledge base as is  available.  It  is  possible to reflect 
internal  variables of routines  inside  the semantic  network,  but  its  usefulness  is  limited if  no 
knowledge- or simulation related actions are performed with them.
The different subdomains and their  respective nodes  should be chosen to reflect  the distinct 
partitioning given by the data of different modules, general knowledge bases, lexical databases 
and other components which are used in the simulation.
Careful consideration must be given to the creation of new ontologies and traverser types, as the 
use of relation types like “executes”, “is_a” and “followed_by” should be consistent throughout 
the whole knowledge base and traverser hierarchy. When working with an appropriate editing 
tool and existing ontologies, such problems are solved by creating the necessary ontology links 
automatically  (see section 5).  The documentation of existing and future Semantic  Traversers 
explains the relation types and their use inside the traversers.



Though Semantic Reflection is strongly encouraged, it is not enforced by the chosen approach. 
This leaves experienced designers the choice to use any combination of programming techniques 
and existing libraries or toolkits. Semantic Traversers can easily communicate through the same 
or  even different  semantic  networks.  But  if  required,  they  might  also  be  interconnected  by 
another top level application that controls  them and manages data interchange between their 
routines directly.
Multiple functions of  one programming language being subsequently called by using different 
nodes of the semantic network could be replaced by combining them into one function call that 
invokes all of the other functions. Apparently leaving the concept of Semantic Reflection at this 
point would have drawbacks, as it is more difficult to reflect system changes in the knowledge 
base  with  a  monolithic  function  call.  Furthermore,  successive  function  calls  from  different 
programming languages are only a matter of available traversers in our system while it would 
require external libraries and cautious design otherwise.
We have illustrated the principles of designing knowledge bases and Semantic Traversers based 
on Semantic Reflection. In the next section we will specify the requirements which arise from 
these principles.  We will also present a tool that  combines the necessary functions to form a 
simple and powerful  editor  to  interact  with  the  enriched  semantic  networks  which  we have 
developed.

5 Creating an adequate editing tool

The full potential of Semantic Reflection is utilized by offering a proper visualization and editing 
software. With such a tool it is easy to incorporate application data and logic into the knowledge 
base. The illustration of program flow enhances debugging capabilities as well as it allows an 
easy understanding of application logic. Simultaneous editing features make it possible to test 
and reconfigure applications or VR/AR simulations at runtime. For example, a single change of 
one relation can then toggle between two completely different sets of simulation modules.
The respective tool developed is depicted in Figure 5. It provides intuitive visualization as well 
as  simple  usage  to  support  work  with  a  diversity  of  different  ontologies  and  concepts. 
Instantiation of abstract concepts to concrete objects is accompanied by selection and grouping 
features to store existing and new elements inside subdomains and nodes. Selection, duplication, 
deletion and movement of nodes and relations follow common interface rules.
Basic ontologies are loaded into a repository. Concepts and object templates can then be dragged 
into the workspace where the necessary connections are created automatically. Such ontologies 
and templates are created as semantic networks with the same editor.
The editor  facilitates editing of static semantic networks to create applications. In addition, an 
active  semantic  network  inside  a  running  application  may be  passed  to  the  editor  to  allow 
keeping track of the system state and its data flow. It is possible to modify running processes by 
changing variable values as known from debugging tools. To improve virtual prototyping efforts, 
changing  the  whole  application  architecture  during  runtime  can  also  be  achieved  in  our 
approach.



Figure 5: The semantic network editor. This screenshot displays a sample network loaded and 
arranged by an early version of the editor. Selected nodes and relations are dotted and animated. 
A thick, red relation indicates it is being traversed.

6 Conclusion

By offering  a  general  and  intuitive  representation  of  application  logic,  scene  graphs  and  a 
diversity of simulation-related module data, the development of IVEs is significantly simplified. 
Semantic  Traversers  provide  the  basic  routines  to  create  such  a  representation  and  perform 
calculations on it while implementing the principle of Semantic Reflection.
This formalism allows the creation of long-term-usable applications  which are described in an 
abstract  manner.  The  semantic  representation  is  platform-independent  and  easily  modified 
without  requiring  knowledge  of  specific  programming  languages.  Reusable  traversers  offer 
parameterizable access to the semantic network.
Extensibility is ensured by a common and unrestricted interface to all components. This interface 
is the KRL. It is also possible to integrate proprietary software into the framework to permit 
usage of existing libraries.
The  versatility  of  STs  was  shown  in  several  examples.  These  examples  covered  simple  AI 
routines as well as complex multimodal integration modules for VR/AR simulations.
To create and maintain large scale Virtual Reality environments and intelligent agents, a suitable 
tool was presented that handles and visualizes the necessary data structures.
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