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Abstract

We present an interactive simulation of Swarm Grammars
(SGs). SGs are an extension of L-Systems, where symbols
of the production system are considered agents, whereas the
given production rules determine their differentiation or re-
production. Assigning boid properties to the SG agents yields
spatial dynamics apt to building structures in space and to col-
laborate stigmergically. In the presented interactive simula-
tion, we put an emphasis on accessible interactive visuals for
shaping the initial configuration of the simulation, to program
the agents’ perceptual and productive behavioural abilities, to
dynamically drive developmental stages and to fine-tune vi-
sual structural properties such as colouring and scaling of the
utilised developmental building blocks. Our system has been
successfully deployed to promote swarm dynamics and de-
velopmental processes as important aspects of Artificial Life
in a playful way. We present results from deploying the sim-
ulation in the context of an event to promote STEM research
among high-school girls.

Introduction
Confronted with the challenge of providing an engaging
entrance point to Artificial Life research to young high-
school students, we decided on implementing an interactive
Swarm Grammar (SG) simulation (von Mammen and Jacob
(2009)). SGs seemed to be an adequate choice, as they inte-
grate aspects of complex system dynamics—bridging from
the behaviour or simple individuals to the emergent prop-
erties of large populations—and developmental processes—
yielding unique artefacts that allow to trace spatial interac-
tion processes over time.

In order to kindle intrinsically motivated engagement
(Koster (2013)), the simulation was devised to (a) estab-
lish a relationship between the students, the software and its
artefacts. (b) We had to provide accessible means to defin-
ing rules and configuring agents so the students could chal-
lenge their competence in the actual simulation processes
and explore the outcome of their high-level programming
ingenuity. (c) The intensity of the students’ explorations
and design efforts has to result from their voluntary engage-
ment. Accordingly, the simulation provides an open-ended,

directly manipulatable playground environment that is freely
and widely accessible as a public, WebGL-driven website1.

In the remainder of this paper, we present the following
aspects of the project. In the next section, we briefly sum-
marise the key concepts from related works that we utilised
in the agents’ flocking definition and their (re-)production
rules. Afterwards, we explain the simulation concept with
an emphasis on its visual programming assets. Before con-
cluding this work with a brief summary and an outlook on
possible future work, we dedicate one section to presenting
select simulation artefacts as well as preliminary user feed-
back.

Related Work
Our simulation concept has been developed to support the
definition of perception and actuation properties of ‘boid’
agents and the construction, reproduction or differentiation
of swarm grammar agents. The deployed mechanics of user
interaction and visual programming techniques that will be
outlined in the next section, are a translation of the follow-
ing, underlying geometrical and grammatical relationships.

Boid Flocking
Reynolds (1987) presented the concept of ‘bird-oids’, or
boids. It implements smooth, decentralised steering of
swarms of agents based on several ‘flocking urges’ that
emerge from the relationships between an agent and its
neighbours. The neighbourhood is determined by the
agent’s radial field of view (FOV) defined with a maximal
distance dmax and an angle α, see the annotated screenshot
from our simulation in Figure 1.

Neighbours within a minimal distance dmin are consid-
ered ‘too close’ and trigger an evasive manoeuvre away from
their centre (separation urge). The agent further synchro-
nises its velocity (heading and speed) with the other neigh-
bours (alignment urge) and it accelerates towards their cen-
tre (cohesion urge). Coefficients of these acceleration urges
determine the emergent flocking behaviour. In addition to

1http://www.vonmammen.org/SG-GD/
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Figure 1: Perception of a ‘boid’ agent. Agents within its
field of view are perceived as neighbours, those within the
‘Personal Space’ are considered too close, triggering an eva-
sive manoeuvre.

separation, alignment and cohesion, we utilised a corre-
spondingly weighted random vector (random urge) and a
global direction vector (direction urge) to steer the individ-
ual agent. The acceleration a⃗i of an individual i totals its
j neighbour-dependent urges u⃗ij , scaled by the individual’s
weights wij . The agents’ acceleration and flight are kept
within reasonable boundaries by maximal values for accel-
eration, amax, and velocity, vmax. For simplicity sake, we
chose integration step size ∆t = 1 to infer the updated po-
sition p′i of individual i. The corresponding equation system
is listed below; markings denote the sequence of variable
updates, |x⃗| denotes the norm and ˆ⃗x the versor of vector x⃗.

a⃗i =
∑
j

wij u⃗ij

a⃗′i = max(amax, |⃗ai|)ˆ⃗ai
v⃗′i = v⃗i + a⃗i∆t

v⃗′′i = max(vmax, |v⃗′i|)ˆ⃗v
′
i

p⃗′i = pi + v⃗′′i ∆t

In Figure 2, all flocking parameters are shown that the
user is encouraged to alter. Similarly to Reynolds’ later ex-
tensions (Reynolds (2000)), we give the user the ability to
introduce novel agents, to change their FOV and flocking
weights on the fly and, thus, to interactively guide the emerg-
ing flocks.

Swarm Grammar (Re-)Production
Originally, a swarm grammar SG = (SL,∆) was conceived
as a combination of a rewrite system SL = (α, P ) and a
set of agent specifications ∆ = {∆a1 ,∆a2 , ...∆an} for n
types of agents ai (von Mammen and Jacob (2009)). The
rewrite system SL loosely followed the concept of an L-
system with axiom α and production rules P , as described
by Prusinkiewicz and Lindenmayer (1990). In the simplest

Figure 2: Boid paramters as displayed to the user and offered
for alteration. Changes to the Field of View parameters are
immediately reflected by the neighbourhood visualisation of
the introspected agent.

form of context-free 0L-systems, each rule has the form
p → s, where p ∈ Ω is a single symbol over an alpha-
bet Ω, and s ∈ Ω∗ is a word over Ω. The application of
the replacement rule can be conditional, for instance upon a
successful stochastic experiment (with specified probability
θ) or repeatedly over time (with a specified time period ∆t).

Agent specifications may include the flocking parameters
described above such as the agents’ FOVs and urge weights,
as well as characteristic parameters of the geometrical ob-
jects they leave behind during their flight. Figure 3(a) shows
a representative artefact produced by an early swarm gram-
mar, emphasising the branching structure emerging from the
reproduction rules SL = {A, {A → BBB,B → A}} in
combination with a moderate separation urge.

Later, the rule representation of Swarm Grammars was
extended towards quantitative stigmergy (von Mammen and
Jacob (2008a)), which (a) allowed to trigger (re-)production,
in case a specific environment is perceived and (b) to utilise
various static building blocks as well as agent progeny as
product. Hence, spatial structures became the outcome of
the agents’ behavioural interactions rather than simply track-
ing their flight. A structure built by an extended SG is shown
in Figure 3(b).

Interactive Simulation Concept
Our application offers several user interaction mechanisms
that support the population and configuration of the simu-
lation space. In order to keep the user interface free from
clutter, we decided to omit certain functionalities altogether,
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Figure 3: (a) An early SG definition emphasising branching
(von Mammen and Jacob (2009)). (b) Artefact built by an
extended, stigmergic SG (von Mammen et al. (2009)).

such as the rotation of geometric bodies, and we stripped the
UI of any data that would not immediate benefit the target
audience, such as the bodies’ coordinates. At the backend,
too, we pursued a simple but still ambitious management of
agent specifications and geometric templates.

Basic Scene Manipulation
Figure 4 shows a close-up of the top-left corner of the main
screen. Here, the user can start and stop the simulation. In
the pull-down ‘templates’ menu an agent specification or a
static geometry can be chosen to populate the simulation
space. Clicking on any object in the scene (initially, there is
the ground) places the selected template on top—in this way,
the user can stack objects and populate in all three dimen-
sions (Figure 5). Click and drag of an object moves it par-
allel to the ground. Hovering above an object and pressing
the minus key removes an object (we found that the delete or
backspace key is frequently assigned to other tasks in stan-
dard internet browsers).

Figure 4: The menu of the simulation’s main screen. The
simulation process can be started, feedback about the current
simulation step is provided and a template can be selected to
populate the simulation scene.

Right-clicking an object exposes its properties, as seen
in Figure 5, and allows the user to change them. Property
changes apply to all objects of the same name, which is
shown as the top-most entry in the introspection menu to

Figure 5: Templates are placed on top of any clicked, exist-
ing objects. Properties of objects in the scene can be intro-
spected and change on right click; an according menu ap-
pears in the upper-right corner of the screen.

the right. An alteration of a name triggers the creation of an
according, new template in the ‘templates’ drop-down menu
(Figure 4). In this way, the user can create a diverse set of
static geometric objects and agent specifications.

Boid flocking parameters, including the field of view, and
the (re-)production rules are part of an agent specification.
As we offer a visual programming interface to configure
some of these properties, the camera positions itself at a
predefined distance from the agent when introspected. The
dolly animation closing in on an introspected agent is shown
in Figure 6.

Rule Editor
During introspection of an agent specification, alterations of
the field of view parameters, dmin, dmax, α, result in an up-
dated visual representation. This immediate reflection helps
the user relate the parameter values to actual geometric di-
mensions and to quickly grasp the variables’ relationships.
Yet, the visualisation of the field of view plays another, more
important role.

Figure 7 shows the view of an introspected agent. Pro-
duction rules can be specified directly in the vicinity of the
agent. In particular, dice, timers, and and arrow-enclosed
timers can be dropped, which represent the abstract rule
conditions and associate probability θ, point in time t, and
time interval ∆t variables, respectively. Platonic solids and
agents that are placed outside of the introspected agent’s
FOV are products of a behavioural rule, those inside are con-
sidered quantitative, stigmergic conditions. Any such stig-
mergic conditions are fulfilled, if the according number of
objects is perceived by the agent in the neighbourhood or in
the personal space, respectively. For production objects, the
minute geometric offset from the introspected agent is taken
into account. Their displacement as expressed visually in the
rule determines their relative placement in the simulation,
which resolves the issue of potentially conflicting product
placements.

As a consequence of the semantics associated with differ-
ently located platonic solids and agents, their placement and
movement are diligently tracked and registered. The red bar
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Figure 6: (a) A Swarm Grammar agent placed on the ground. When right-clicked, the camera automatically positions itself at
a predefined distance (b-d).

towards the bottom of the screen provides feedback about
the user’s programming efforts and any corresponding rule-
affecting changes. The grey bar below provides the user with
information about the currently displayed rule, to create new
rules, to remove existing ones and to browse the complete set
of rules of the introspected agent (and its namesakes).

Figure 7: Introspecting an agent specification, sets of pro-
duction rules may be visually programmed. Abstract con-
ditions, stigmergic conditions, and products of the rules can
be placed in the local vicinity of the agents.

Preliminary Feedback & Example Outcomes
In this section, we introduce the circumstances of the first
deployment of the interactive simulation presented in this
paper, Swarm Grammars GD. We provide details on the pre-
liminary feedback we have gathered and we give examples
of the artefacts built in this context.

Girls-in-STEM Programme

The concept was conceived while developing contribu-
tions to an entertaining and informative programme that
aims at encouraging girls to develop and follow their pas-
sion for Science, Technology, Engineering and Mathemat-
ics (STEM) at the Faculty of Applied Computer Science at

the University of Augsburg, Germany. As part of this pro-
gramme, four groups of roughly ten girls between the ages
twelve to fifteen attend four slots of 45 minutes each, of-
fering different contents and activities: ‘Autonomous Vehi-
cles’, ‘Sight-Finder’, ‘Touch-Robots’, and our entry ‘Artifi-
cial Life’.

Aspects of Artificial Life Research
We identified the following aspects of Artificial Life re-
search that our implementation makes accessible to inter-
ested novices in a playful manner.

Similarly to popular simulation environments such as
NetLogo (Wilensky and CCL at Northwestern University
(2014)), Swarm Grammars GD promotes an agent-based
modelling approach. More specifically, it provides direct
access, often supported by visual cues and interactive el-
ements, to the parametric properties and sets of “if-then”-
rules that describe the behaviour of deterministically or
stochastically acting, spatially interacting reactive agents
(Wooldridge (2009)). When occurring in greater numbers,
the interaction of such agents may result in complex feed-
back cycles, which in turn might lead to emergent phenom-
ena, such as flocking dynamics (von Mammen and Jacob
(2008b)) or complex built constructions (Bonabeau et al.
(1999)). The means to directly program an individual agent
or to simultaneously modify all agents of a certain type al-
lows one to observe and experiment with the relationship
between local behaviours and such global emergent patterns,
as for instance portrayed by Johnson (2001).

As described in the section on Related Work, the in-
teraction mechanisms that individual agents can perform
in Swarm Grammars GD are limited to neighbourhood-
dependent boid flocking (Reynolds (1987)) and rule-based
production as in advanced swarm grammar concepts (von
Mammen and Jacob (2009)). Both can be considered
concrete concepts of two important Artificial Life themes,
namely collective locomotion and developmental models.
We make the first theme accessible by offering the means
to visually program an agent’s perceptional abilities. It is
further promoted as simple construction rules that merely
place single three-dimensional objects behind the agents at
each simulated step effectively trace the resulting flight dy-



namics, as for instance seen in Figure 8(a).
Regarding the latter theme, developmental models,

Swarm Grammars GD touches on the aspects of produc-
tion, reproduction and differentiation, whereas these pro-
cesses are triggered by the agents’ internal states, effected
by timers and stochastic experiments, as well as external
stimuli (see our explanations of the visual rule editor above).
Motivating differentiation based on locally perceived stim-
uli, such as the presence of a specific construction template
or of a peer of a specific type, enables modelling a mech-
anism similar to task assignment in social insect societies
(Camazine et al. (2003)). Stimulus-dependent construction
efforts, on the other hand, allow one to implement sigmer-
gic lines of communication (Grassé (1959)), i.e. indirect
communication through the environment. All elements in
Swarm Grammars GD, whether they are agents or built ob-
jects, have a lifespan attribute which determines the respec-
tive element’s timely removal from the simulation (the ele-
ments are not removed, if this attribute is set to the value 0).
Utilising such a timed appearance in combination with stig-
mergic construction and boid-based cohesion, a simplistic
model of Ant Colony Optimisation can be retraced Dorigo
(2007).

Presentation Sequence
Despite the intricate modelling options Swarm Grammars
GD provide the user with, in the context of a short introduc-
tion to young novices, we directed our introductory STEM
session to Artificial Life to the foundations of agent-based
programming and discussed the intuitively accessible ba-
sics of swarm dynamics, construction and reproduction. Af-
ter brief examples of L-Systems (Prusinkiewicz and Lin-
denmayer (1990)) and boids (Reynolds (1987)) and their
utilisation as special effect techniques by the movie indus-
try (schematic slides and movie snippets), we introduced
Swarm Grammars SG hands-on. Following the structure of
the above section ‘Interactive Simulation Concept’, we first
explained the main view of the simulation space and basic
user interactions to populate it. Next, we briefly demon-
strated the exploration potential merely arising from altering
various boid parameters. Finally, we detailed the composi-
tion of production rules (in this order: producing static ge-
ometries, initialising other agent specifications, and adding
conditions to the rules). At this point, each group had ap-
proximately 25 to 30 minutes at its disposal for exploring
and design artificial artefacts and swarm dynamics, under
guidance and with feedback if desired. Our offer to print
out screenshots of the individually generated artefacts was
in good demand, we handed out 24 of them.

Leeway for Improvement
Some weaknesses of the current simulation became obvious
during the supervised sessions—especially with respect to
choosing reasonable parameter values, including boid urge

weights, and configuring abstract production rule conditions
such as chance or time steps. One could mitigate the issue
of conflicting or ineffective boid parameter sets by offering
several presets such as the ones evolved by Kwong and Ja-
cob (2003). Regarding conditional values, if one does not
want to drastically limit the expressiveness of rule compo-
sitions, warnings could be issued that hint at potentially un-
reasonable parameters. For instance, agent multiplication at
high frequencies quickly exhausts the host computer, if the
maximal life span of the agents is relatively high.

While exploring, one student asked how one could pro-
gram the cubes (as opposed to the agents) to reproduce
themselves. This question made clear that the distinction
between producing agents and static geometries is arbitrary,
not necessary, and possibly not even beneficial for the sake
of functional distinction. At least one could expand the com-
putational representation and nullify this rigid distinction.
Other, more frequently asked questions were related to in-
creasing the diversity of templates: although creating new
templates by entering new names was quickly understood,
this mechanism seemed to be too lengthy for supporting the
creative diversity in colour and scale some users would have
liked to deploy.

Despite the shortcomings of the current implementation,
twelve out of a total of 42 participants declared our session
and the use of Swarm Grammars GD to be the highlight of
the whole introductory programme.

Example Artefacts
Figure 8 shows an array of six different Swarm Grammar
artefacts programmed by participants of our session. We
can identify different classes of structural complexity based
on the flocking and production rule complexities of the SG
agents. With only minor changes to the default boid flock-
ing parameters (see Figure 2) and continuously dropping
geometries, swarm motion is captured by the built arte-
facts (Figures 8 (a-c)). Agents with distinct construction
behaviours—either resulting from differentiated reproduc-
tion or from interactively adjusting agent specifications—
yield more visually complex structures (Figures 8(d-f)).

Perspective Shots
Unfortunately, as the students did not have much time to ex-
plore, play and create, their artefacts were mostly captured
from a global perspective, which usually does not empha-
sise their appealing peculiarities. Figure 9 displays several
Swarm Grammar configurations, snapshots of the emergent
generative processes and close-ups of the final products set
in scene.

In particular, three different Swarm Grammars are shown.
The first one, with captions subtitled cloud, works based
on a simple, unconditional production rule that traces an
upwards-flocking agent with a cluster of spheres. The
twists and turns triggered by the interplay of several flocking
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Figure 8: (a-b) Flocking SG agents leaving traces of one platonic solid (red spheres and blue cubes, respectively). (c) Individuals
with a strong directional upwards urge leave a trail of two solids, golden spheres and offset green cubes. (d-f) More intricate
and diverse structures emerge from building efforts by heterogeneous agent sets.



agents (as seen in Figure 9(b)) are exalted in the close-up by
an upwards perspective and light shading. The second exam-
ple deploys two agents, the first one simply flies upwards, re-
peatedly creating an offspring of a different kind (rule0wall).
The latter one is pushing hard to the right while continuously
dropping cubic solids (rule1wall) but it is also distracted by
its neighbours and thrown off its path by some randomness.
The resulting, aligned traces pave a solid uneven wall (close-
upwall); In the third example, a single agent is equipped with
two rules, one to establish a continuous trace (rule0tree) and
the second one triggering periodic branching to two sides
(rule1wall). The repeated branching process (processtree)
yields a tree-like structure (close-uptree).

Conclusion
In this paper, we presented an interactive Swarm Grammar
simulation. It has been conceptualised and implemented in
order to engage a young audience in Artificial Life concepts,
namely swarm dynamics and developmental processes. The
simulation attempts to intrinsically motivate the users by
keeping the learning-curve as low as possible. At the same
time, we challenge the users’ competence by attaining a rel-
atively expressive programmable representation, including
boid flocking behaviour as well as (re-)production behaviour
of Swarm Grammars. The gap between expressive represen-
tation and simplicity is bridged by means of visual program-
ming interfaces for configuring the simulation space as well
as individual agent behaviours.

We exhibited some of the artefacts designed by a num-
ber of high-school students at the age of twelve to fifteen.
We suggested several possible improvements to the software
based on feedback by the students but also based on obser-
vations during supervised hands-on sessions with the simu-
lation. We complemented the display of the students’ works
by three additional Swarm Grammar examples that explic-
itly rely on (a) multiple construction elements in single rules,
(b) differentiated reproduction, and (c) branching production
rules.

In order to further the presented work, we suggest to trans-
late all boid parameters into meaningful interactive visu-
als. For instance, the line-width of arrows representing var-
ious flocking urges could stand for the according, relative
weights. Field of View and other visually represented pa-
rameters should be readily manipulatable, and not only be
altered by means of textual GUIs. The maximal Age of an
agent could be visualised by projecting a faded out geom-
etry along its current trajectory. Also, the composition of
(re-)production rules could be improved by relating them to
the actual environment: the production objects could be pro-
jected on top of the actual simulation environment in order
to facilitate precise definitions of environmental alterations.

Programmatically, we suggest switching from the current,
class-based architecture to a component-based perspective
that allows to aggregate behaviours. This would simplify the

template management and provide the flexibility to assign
behaviours to arbitrary objects, as asked for by the students.
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(a) rulecloud (b) processcloud (c) close-upcloud

(d) rule0wall (e) rule1wall (f) processwall (g) close-upwall

(h) rule0tree (i) rule1tree (j) processtree (k) close-uptree

Figure 9: (a) An unconditional multi-solids production rule to trace an upwards-flocking agent. (b) A snapshot of the resulting
developmental process, given a small set of initial agents. (c) A close-up of the final artefact. (d) An agent that flies upwards
without considering any distractions and periodically produces (e), an agent heading to the right and leaving a cubic-trail
behind. Its trajectory is influenced by its neighbours and chance. (f) The resulting developmental process, and (g) the final
artefact close-up. (h) A simple trail production rule, combined with (i) a periodic branching rule, resulting in a (j) branching
developmental process. (k) The final artefact set in scene with a pixelated 2D style.


