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Abstract. Animations at first, then real-time computer graphics and
human-computer interaction techniques have made interactive simula-
tions possible. Nowadays, they play an enormously important role in
training the operation of complex technology such as aircraft, and they
have achieved a remarkable share in the computer gaming industry. The
fast emergence of virtual and augmented reality solutions promises an
even wider spread and a greater impact for interactive simulations in the
near future. Due to the multifaceted nature of interactive simulations in
terms of confluent scientific fields, due to the underlying iterative and
agile development processes, and last but not least due to the inherently
central human factors, we have been integrating the CoSMoS process
of complex system modelling and simulation into our course curriculum
on interactive simulation for computer science graduate students. In this
work, based on an overview of the contents and the logistics of the course,
we present our conceptual efforts towards this goal. We emphasise the
role of the CoSMoS process, discuss its impact on the students’ projects,
and we provide concrete examples.

1 Introduction

Since the first human-in-the-loop simulators entered the market in the 1980s [46],
interactivity has evolved into an increasingly important aspect of scientific sim-
ulations. Nowadays, established mathematics frameworks such as Mathematica,
Maple or Matlab provide ample support for visualisation routines and interactive
parametric exploration of any devised models, whereas development frameworks
such as Unity3D, Unreal Engine or CryEngine that primarily target the com-
puter gaming market are offered and marketed in the context of simulations as
well. Due to the fast-paced strides towards ubiquity of virtual and augmented
reality systems [61], for instance by utilising widely availably smart phones, we
expect an even more accelerated spread of interactive simulations in the near
future.

Numerous areas of computer science feed into the development of an inter-
active simulation—human-computer interaction, real-time computer graphics,
visualisation, modelling and simulation approaches, etc. The according method-
ologies and techniques are deployed to make a simulation model accessible to
the user. In addition to translating reality into an adequate domain model and
further into a suitable computational representation, or platform model, the
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creators of an interactive simulations are confronted by an abundance of user-
related interfacing challenges. In all brevity, they need to translate the user’s
wishes into effective commands of control and model changes, and they need to
translate the matter-of-fact results of the simulation process into visualisations
(mostly), that are quickly understood and capture rather than lose the user’s
attention. To render the trade even more challenging, all of these translations
need to happen at rather high rates that provide for an uninterrupted interaction
experience.

Motivated by their great and growing importance, we set out to teaching
students foundational knowledge about interactive simulations. In particular,
we designed a university course to empower computer science graduate students
with an interwoven in-depth apprehension of methods in the associated fields.
Thus, the students acquire knowledge to evaluate and skills to contribute to
the design and the programmatic implementation of interactive simulations. In
this work, we present our course concept, focusing on the role of the CoSMoS
process of complex system modelling and simulation. Based on a description of
our course concept (Section 2), we highlight the role of the CoSMoS process in the
curriculum as a whole, and with respect to the accompanying student projects, in
particular, in Section 3. Next, we present several select student projects (Section
4), also shedding light on the development processes the student went through
throughout the term. We conclude this work with a summary of our findings
and an outlook on future work on CoSMoS for interactive simulations.

2 Synopsis of an Interactive Simulation Course

An interplay of a variety of computer science disciplines provides the foundation
for interactive simulation. Accordingly, the contents of a course on interactive
simulation greatly vary dependent on the expected knowledge base of the stu-
dents as well as complementary courses offered by the hosting institution. In our
case, we devised a university course suitable for master students in computer sci-
ence and closely related programmes of study. The course runs for four months,
staging a 2-hours-lecture and a 2-hours-tutorial each week. In combination with
the allotted project work, the course demands for a total workload of 150 hours.

In the following paragraphs, we summarise the contents of nine provided
lecture units. After an introduction to the subject matter, we teach the CoSMoS
approach to modelling and simulation. Next, foundations of computer graphics
are conveyed, as well as a mathematical display of real-time physics computation
models and algorithms. Visualisation methods and an introduction to human-
computer interaction techniques complete the first block of basic lecture units.

The second block of advanced lecture units focusses on model representation
and process optimisation both of which are important constituents of interac-
tive simulation technology. After presenting the foundations of discrete event
simulation and an array of computational representations, popular conservative
and approximative acceleration mechanisms in the realm of interactive applica-
tions are discussed. As the versatility and the transferability of an agent-based



modelling (ABM) approach is rather unique but can easily result in costly com-
putations, we commit another lecture unit to introducing novel research concepts
that promise to scale ABM to reach interactive performances.

2.1 A Short History of Human-in-the-Loop Systems

The history of interactive simulation begins with efforts to enhance existing sim-
ulation data by means of interactive custom animations. We present an according
example, a SIMAN job shop simulation model of an automatic guided vehicle
system visualised by the CINEMA animation system [49]. The optimisation of in-
dustrial workflows was the most compelling argument for such animation systems
in the 1980s. At the time, the market offered an array of simulation animation
tools, including Model Master, XCell, and Performance Analysis Workstation.
Next, solutions were offered that tightly coupled interactive visualisation with
the underlying simulation. See-Why was one of these packages that promised
Visual Interaction Simulation (VIS). An according example allowing the config-
uration of a locomotive servicing centre is shown [47]. Definitions of basic terms
such as model [67], simulation [4], and the early-conceived notion of interactive
simulation (‘on-line simulation’) [31] follow the introductory historic examples.
The distinctive feature of interactive simulations is the possibility of human in-
fluence during the simulation process, typically referred to Human-in-the-Loop
systems [54]. We look at the taxonomy of interactive simulations, their advan-
tages over stand-alone simulations, established fields of application, technological
challenges, and their historic evolution in respect to programming paradigms,
languages, and interfaces. The basic steps taken in a simulation project, espe-
cially under consideration of interactivity, and several examples of state-of-the-
art interactive simulation systems round off this lecture unit. The examples are
organised to guide the students from comprehensive immersive solutions with
special hardware configurations (driving and flight simulators) to software-only
solutions, which are the focus of the lecture.

2.2 The CoSMoS Process & Gamification

The orthogonal relationship between descriptive and defining models precedes
the remaining contents of this lecture that primarily aims at the process of mod-
elling and simulating complex systems. Examples for seemingly disparate ap-
proaches are provided that put different weights on these respective modelling
purposes: In detail, these are understanding complex behaviours of real-world
systems, simulating complex system themes, engineering complex algorithms,
and engineering complex systems [51]. We consider the means of scientific in-
strumentation (extrapolation, conversion, augmentation) to become aware of its
limits and limitations [25] and to define the products of the CoSMoS modelling
and simulation cycle. The definition of these products motivates an elaborate
discussion of the phases of discovery, development and exploration [2]. Interac-
tive simulations need to engage their users. The relatively novel paradigm of



turning burdensome chores into games suits this challenge well. Hence, we pro-
ceed with the presentation of game definitions and, more specifically, aspects of
development of computer games [42]. The short history of serious games (start-
ing in the early 2000s) is summarised [21, 59] and representative examples are
demonstrated (e.g. [9]). Their concrete successes in terms of engagement are
discussed and a comprehensive list of game design elements [11] is presented
that can be utilised to ‘gamify’ an interactive simulation. All of these elements
can be derived from the cornerstones of intrinsic motivation, namely related-
ness, competence, and autonomy which are explained as well [33]. In the context
of interactive simulations, these aspects can be considered during the discovery
phase, whereas gamification typically takes place during the development phase
of the CoSMoS process.

2.3 Computer Graphics Foundations

The increasing availability of dedicated graphic processing units (GPUs) pro-
motes the utilisation of a standardised 3D rendering pipeline for any kind of
visualisation needs, whether 2D or 3D, vector-based, or otherwise. Therefore,
this lecture units seeks to empower the students with a basic understanding of
this rendering pipeline [1, 42, 63]. Basic concepts that are presented in this lec-
ture unit are: object definitions based on geometric primitives and various kinds
of textures, the view reference, spatial transformations (also introducing quater-
nions in the context of rotational operations), basic types of lighting, shading,
and light sources, shadow definitions and different implementation techniques
such as shadow maps. A short walkthrough of generating 3D graphic assets
suited for real-time rendering rounds off this lecture unit.

2.4 Real-time Physics

This lecture seeks to provide a solid grip on real-time capable approaches to
simulate physical processes [8, 24]. We have a quick look at the taxonomy of the
vast field of physics simulation [14] but we focus on real-time methods of forward
dynamics, covering three categories: rigid-body dynamics [7, 15], soft-body dy-
namics [13], and particle physics [38]. Next to the general laws of motion, we look
at non-penetration constraints, collision resolution and friction forces, and com-
plementary constraints in the context of rigid body simulation. For calculating
the respective forces, we present the penalty force method, Lagrange multipli-
ers, impulse-based simulation, and reduced coordinate formulation as well as the
Coulomb friction model. We introduce a taxonomy of constraints and explain
how they can serve as representation of mechanical joints of articulated bodies
[6]. We follow the steps to transform the resulting differential algebraic inequal-
ities into an efficiently solvable linear complementary problem. We conclude the
integration of forces with a brief recap of basic methods of numeric integration,
starting with Euler and Runge-Kutta. We discuss algorithms for efficient col-
lision detection and contact point generation, e.g. [37, 18]. We then widen the



scope of this lecture unit, looking at one specific approach to computing incom-
pressible deformable mesh dynamics that is superior to alternative approaches
in terms of efficiency and accuracy [13]. Finally, we introduce to real-time par-
ticle physics, explaining particle approximation functions based on the notion
of kernel functions [38], culminating in recent advancements in unified real-time
physics simulation [39].

2.5 Visualisation Methods

To a large extent, interactive simulations imply some kind of visualisation of
the underlying models and the emerging simulation processes. In this lecture
unit, we emphasise the necessity to consider human perception and information
processing when crafting the platform model of an interactive simulation and
we provide an overview of foundational visualisation techniques. We follow the
structure of numerous textbooks on this subject matter and motivate the dis-
cussion on the human vision apparatus by providing several examples of optical
illusions [62]. In a 7-step guideline, we establish an idea of the selection of the
proper visualisation method embedded in the context of data acquisition and
the intended modes of interactions [17]. Qualitatively, visuals can be measured
in terms of novelty, informativeness, efficiency and aesthetics [58]. We shed light
on various scientific, multidimensional, multivariate visualisation methods [65],
before we turn to visualisation techniques that allow for the immersive aug-
mentation of simulation contents, such as examples of flow visualisation [43],
graph-based visualisations [34], or the transformation of volumetric (4D) data
into 3D surfaces [30].

2.6 Human-Computer Interaction Techniques

The design of interactive simulations necessitates an interface between human
and computer. This lecture unit provides the necessary background, starting
with a brief history of HCI research [44]. Human interaction requires the user
to process and translate sensed information into motor activity [12]. In gen-
eral, user interactions can be classified as operations of selection, manipulation,
navigation, and system control [42]. As any other design task, the design of in-
teractions is the result of a tradeoff between multiple goals and constraints [16].
We present a top-down approach to designing interaction scenarios that starts
with the definition of an application’s requirements and arrives at individual
interaction tasks. We have a brief look at multimodal approaches, e.g. affective,
perpetual, attentive, and enactive interfaces [29], and we explore the modes of
interaction of an embedded multimodal prototype game [19]. We quickly step
through established and emerging immersive hardware technologies, including
devices of motion sensing and object tracking capabilities. We convey a general
understanding for the hard latency limitations of interaction hardware and we
provide recipes for rather general issues that arise in real-world sampling, i.e.
noisy sensing and the state estimation problem [63, 42].



2.7 Discrete-Event Simulation

In this lecture unit we provide an overview of computational representations as
well as modelling and simulation approaches. We start out with explaining the
basic terminology of discrete-even stimulation (DES) in the context of previous
lecture units, especially those described in Sections 2.1 and 2.4 [3]. To this end,
hybrid simulation and combined simulation concepts are of great importance.
We roughly trace the history of this seminal field in terms of DES software
packages and languages [45]. Three ‘world views’ on DES (event scheduling,
activity scanning, and process interaction) serve as the starting point for our
venture into historic approaches. We meticulously describe the elements of a
DES and provide a glimpse at charts already used for engineering DES back
in the 1960s. These diagrams (activity cycles, wheel chart, flow charts) are our
point of departure towards other computational representations commonly used
for modelling and simulation: Finite state machines, UML transition diagrams,
Petri nets [50], artificial chemistries [5], cellular potts [28], cellular automata
[68], random boolean networks [32], boids [53], L-Systems [52], swarm grammars
[40], and the general approach of agent-based modelling [10, 66].

2.8 Acceleration Algorithms

Low latency requirements of the interaction interface (Section 2.6) as well as
the desire to serve large, complex models for interactive exploration at real-time
demand for the utilisation of sophisticated acceleration algorithms. Computer
graphics and real-time physics are currently occupying this niche and this lecture
unit aims at exhibiting their commonly used, highly efficient approaches [1].

It is divided into four parts: First, we focus on bounded volume hierar-
chies (BVHs) and binary space partitioning trees (BSPs). While BVHs are
built bottom-up based on bounding volumes that enclose geometries or other
bounding volumes recursively, BSPs are generated top-down by recursive divi-
sion of the simulation space. We also provide guidelines to coping with (a) mobile
and (b) deformable objects [35, 36, 60]. Second, we explain different culling tech-
niques which ensure that graphical objects are not pushed through the rendering
pipeline (Section 2.3), if their contributions to the final rendering are marginal
or not existing. Examples are surfaces that lie outside of the view frustum, those
that are hidden behind objects, or those that are so far away from the camera
that they could hardly be seen on the screen. Third, we present approaches that
lower the level of detail (LOD) of the rendered objects to the match the actual
needs—as opposed to always rendering at the highest possible level of detail
[23]. An example of LOD is the number of triangles of discrete geometries which
can, for instance, be selected according to the distance to the camera. We con-
clude this lecture unit showing stochastic acceleration algorithms for collision
detection.



2.9 Dynamic Model Abstraction

Motivated by the outlook on large, multi-scale, multi-representation simulations
[26], we tackle the issue of ever-growing computational complexity by means
of dynamic model abstraction techniques in this lecture unit. Particularly, we
focus on adaptive optimisation of agent-based models, as they can serve as a
generic computational representation. Concerning the immense computational
costs running large-scale simulations, we discuss the limitation of different model
aspects and how they could improve efficiency. We conclude this investigation
with the realisation that if we want to model and compute natural systems, we
need to consider dynamic systems with dynamic interaction topologies (DS2)
[20]. In addition to hardware-based solutions (e.g. [27]), we promote dynamic
model adaptation. Agent compression identifies and subsumes clusters of similar
agents [57]. The dynamic extension of this approach considers container agents
to maintain similar agents and to offer the possibility to remove or add individ-
uals on demand. Compression managers are responsible for (a) organising the
container agents and their contents, and (b) representing the compressed agents
to the remainder of the model [64]. Taking this idea even one step further, we
provide the detailed steps of the self-organised middle-out abstraction approach
[41] and we show its capabilities with respect to a decentralised, agent-based
blood-coagulation simulation [55, 56].

3 CoSMoS’ Central Role

The CoSMoS process is introduced right after a general introduction to the
course (see Section 2.2), as it provides a flexible, yet focussed guideline for all
phases of the development of interactive simulations. In this section, we first
detail a way of applying the CoSMoS process to student projects, following the
explanations in [2]. Second, we present a course infrastructure to realise this
approach.

3.1 CoSMoS for Interactive Simulation

We discuss the three phases of the CoSMoS cycle (discovery, development, ex-
ploration) in the context of interactive simulation based on the five activities
performed during each phase: scoping, modelling, experimenting, documenting,
and interacting.

During the discovery phase, the greatest challenge to the students is the
primary need to settle on an application domain and to define the goals of
the interactive simulation, e.g. teaching contents or providing for a scientific
exploration tool. Although the students appreciate the opportunity to freely
chose an application domain for their projects, they seem to be more comfortable
when provided with a theme, for instance biology. The only constraints regarding
their choice is the projects’ evaluation based on the following aspects, which are
set to ensure their usefulness and the comparability.



Science The model that drives the resultant prototype has to be scientific, i.e.
it has to be based on scientifically published results. A CoSMoS compli-
ant development process certainly supports this endeavour. In addition, the
modelling domain, the validity of the modelled system, its degree of innova-
tion, and the computational representation and algorithms used give strong
indications for a scientific approach.

Gamification The prototype has to motivate the user to interact and explore
the simulation space. One can try capturing this aspect quantitatively by
describing interaction possibilities, user guidance, usage of game elements,
and the factors of intrinsic motivation as referenced in Section 2.2.

Complexity Interacting with the prototype should be rewarding in itself, i.e. it
should convey insights with respect to the underlying scientific model. The
model complexity defines the scope of potentially educational contents, given
the conveyed complexity considers the full extent of the underlying model.

Aesthetics An interactive simulation has to be aesthetic, not only to efficiently
convey information to the user but also to motivate their involvement. Aes-
thetics can be promoted following established design principles, by utilising
beautiful visual assets, and by combining them in novel ways.

Any steps towards desirable domain attributes, concrete domains, and even con-
crete goals and an application concept, necessitate answering questions about
the projects’ criticality, their limitations, and their measurable success. In the
context of interactive simulations, the answers typically stress the relationship
between the software and the user. The utility for the user, for instance, not only
considers a final simulation result but also the benefit of pro-active participa-
tion in the simulation process. Accordingly, limitations are not only considered
regarding the accuracy and efficiency of the simulation but especially with re-
spect to the degrees of freedom exploitable by the user and the quality of the
communication between the user and the simulation, including aspects such as
clarity and attractiveness. The modelling activity during the discovery phase
is rather limited in the scope of a term-long project. Despite the abundance
of scientific data accessible through online libraries and the large repositories
of computational libraries and tools for numerous scientific domains, compre-
hending the elements and their relationships of a previously unstudied field is
a rather difficult task. For this reason, and also to provide the necessary de-
gree of autonomy to intrinsically motivate the students, we allow the students
to decide on a concrete domain and goal by themselves; based on supervisory
feedback on a written proposal and classroom presentations with subsequent
discussions, the core ideas can then be quickly translated into first proof-of-
concept prototypes. The discovery phase is decisively shaped by documentation
activity—from coarse to fine grained searches for references and tools, through
merging sources, assumptions and ideas into a concept proposal that includes
an early domain model, to creating a first prototype that provides evidence for
the created line of argument.

During the development phase, documentation about the students’ activities
is similarly important. However, to a great extent, it coincides with the devel-



opment of the platform model, an accompanying commented code base, and its
transcription for a given simulation platform. To help reduce the burden that
a comprehensive interactive simulation project incurs, we diminished the scop-
ing activity of the development phase and taught about various tools of the
trade for interactive simulation development—ranging from 3D asset creation
over scripting and high-level, component based model compositions to utilising
third-party plugins and libraries for the targeted development environments. In
frequent presentation and feedback sessions, we ensured that domain elements
were properly represented and domain behaviours were not directly encoded in
the models. Adding instrumentation to the platform model plays an important
role for interactive simulations. This step should closely follow the interaction
concept developed as an extension of the usual domain model, i.e. one that
encompasses the user as a special model element. Nevertheless, the targeted
simulation platform may provide a rather special interaction infrastructure. For
example, the ubiquity of mobile, multi-touch platforms equipped with relatively
weak processing capabilities competes with the processing power, storage capac-
ity, and extensibility of desktop systems. Clearly, any specific interaction plat-
form demands for individual adjustments of the platform model to realise both
the interaction and the simulation concept. Experimentation in the development
phase begins with the first prototype supporting preliminary user interactions.
At later stages of the development phase, it increasingly involves feedback from
testers not directly involved in the development work. Beyond honing the visual-
isation, consistent design, usability and the scalability of their platform models
in terms of parameter settings, numbers of interacting agents, increasing levels
of difficulty and the fine line between balanced, rewarding interaction and user
boredom and frustration.

During the final stage of the course project, the experimentation phase, the
students focus on logging and analysing user responses to their simulations. To
keep the amount of work at a level reasonable in the context of our course, the
students are asked to try each others’ simulations and to ask their friends and
relatives to provide them with some preliminary feedback. This exposure typ-
ically already provides comprehensive insights into the users’ general interest
in the topic, their opinion about model complexity and aesthetics, and whether
they think it is educational. Based on these evaluations, the students are encour-
aged to hone their software and to launch more comprehensive online surveys.
However, these more rigorous steps are not mandatory course stipulations. Nev-
ertheless, the gathered preliminary data in combination with the initial motiva-
tion of their projects, the development processes and the implementation results,
serves as an extensive basis for fleshing out their final report. It culminates in
conceptual improvement that could instigate the next development cycle.

3.2 Course Project Infrastructure

Above, we already touched upon the students’ deliverables and how their reali-
sation is backed by the CoSMoS process. Now, we briefly present the logistical



infrastructure of the course setup to support the traversal of the CoSMoS process
throughout the term.

During the first lecture, the students are first informed about the course
contents and its stipulations. For the remainder of the lecture, we present and
explain several examples of possible project concepts. Although the students
may conceive a project idea completely on their own, providing examples proved
important to communicate the expected scope and the imparted opportunities.
Within ten days’ time, teams of two students need to author a proposal of their
projects. On two pages (ACM double-column format), the students need to mo-
tivate, present and detail their concepts. Hereby, the envisioned user experience
plays an important role as it ties different aspects of the envisioned simulation
together and it implicitly underlines its goal. From a CoSMoS perspective, the
project proposal is part of the documentation activity of the discovery phase.
As such it serves not only as a platform for the students to substantiate their
initial ideas and consistently brush up their findings but also to communicate
their concept to the instructors.

At the time of the proposal submission, a second lecture unit has introduced
the general topic of the course (Section 2.1) and a first tutorial session has
familiarised the students with the development environment that we recommend
(in previous years, we recommended Unity3D). The day after the submission of
the proposals, the students are asked to present their concepts in short 3-minute
presentations during the tutorial session. In this way, all the students in the
course would gain an overview of their peers’ projects and learn about new
ideas, possibly even about the usage of previously unknown code snippets, etc.
The quick start into the projects and presentations early in the term help the
students build up momentum for their projects. In fact, until the last few weeks
of the term, the students would present the state of their projects bi-weekly.
This fosters a certain sense of togetherness and it ensures guidance to maintain
high productivity and to avoid frustration.

Two weeks before the end of the term, final reports are due (six pages, ACM
double-column format) that should ideally condense the documentation recorded
throughout the whole term. One week later, the students need to submit their
projects, including batches of slides for the final presentations which are given in
front of faculty and students of the whole department. The audience is asked to
vote for the best entry in terms of the generic project criteria: science, complexity,
gamification, and aesthetics (Section 3.1). A 15-minute brief oral exam at the
end of the term makes sure that the students have learned and understood the
diverse contents of the course and their relationships.

4 Select Student Projects

In this section, we present select student projects that were developed in two
iterations of our interactive simulation course. First, we describe some of the
outcomes exemplarily. Second, we shed light on the CoSMoS-driven development
process of a specific project.



4.1 Examples

During the first iteration of the course, the majority of the students chose “tech-
nical systems” topics such as routing in communication networks, smart cars,
and power networks. Figure 1(a)-(c) shows according screenshots. The user is
tasked to build and maintain power or communication infrastructures to ensure
their proper functionality. In the network routing and the smart car example,
the user also had to guide the network activity itself by laying out flow paths
of the respective traffic. Some students also journeyed towards biological themes
such as cellular automata as seen in Figure 1(d). Here, a game of life variant
served as the basis for a two-person game with the goal of conquering as much
space as possible solely by adjusting the cells’ rules. During the second iteration
of the course, we proactively advertised biological and natural phenomena as an
exciting and multifaceted field to motivate the student projects—yet, they were
still free to take their projects into other directions. As a result, three groups let
their projects revolve around bees (we had not motivated this trend), see Figure
1(e)-(g). In the first one, the user had to guide a bee’s waggle dance to point
its peers to the location of a food source outside the hive. Figure 1(f) shows a
screenshot of a bee simulation that focusses on the challenge of gathering nectar
and thereby helping flowers pollinate. Lastly, a complex real-time strategy sim-
ulation is presented in which bees need to gather resources, maintain their hive
and defend it against wasp intruders. Other examples included the user-guided
migration of a flock of geese (Figure 1(h)) or the establishment of a fine bal-
ance of interdependent inhabitants in a simulated aquarium (Figure 1(i)). The
interdependency of species provided the basis of yet another title where a new
ant species threatens to overrun a native species and the user is tasked to main-
tain a balance by building barriers or proactively diminishing one or the other
ant population (Figure 1(j)). Focussing on solitary species, a squirrel simula-
tor offered the experience of sharing a rodent’s worries: collecting, burying, and
finding enough nuts to survive the winter season (Figure 1(k)). The importance
of climate also inspired “Cloud Computing”, where a user was tasked to set the
environmental conditions in such a way that certain weather phenomena such
as rain or tornados would emerge (Figure 1(l)).

The set of presented examples emphasises the flexibility of the course project
in terms of contents, perspectives and goals of the student project while ad-
dressing the project requirements as outlined above (Section 3.1). Next, we dive
into one specific project and shed light on how the CoSMoS process informed
its development.

4.2 A CoSMic Case Study: “Drink & Drive”

One student team decided on creating a serious game about the negative effects
of alcohol on traffic participants. They understood that although some accurate
simulators exist for this purpose (e.g. [22]), they don’t provide for a stimulating,
engaging experience. At first the students were hesitant whether their idea was
acceptable as it attempted to approach a serious topic in an engaging, fun way.



(a) Network Routing (b) Smart Cars (c) Power Networks

(d) Cellular Automata (e) Waggle Dance (f) Pollination

(g) Beehive Defence (h) Migrating Birds (i) The Aquarist

(j) Invasive Species (k) Squirrel Simulator (l) “Cloud Computing”

Fig. 1. Screenshots of interactive simulations developed as student projects in two
iterations of the course.



We encouraged them to try anyway. Findings about games that had been de-
veloped for this purpose, such as [48], further boosted the students’ ambitions.
These preceding titles had disconnected from the actual problem too much,
for instance by assuming a third-person perspective on the driving situation.
Quickly, the students realised that their interactive simulation should fill this
gap and make their title “Drink & Drive” both fun and educational, so that the
target group of soon-to-be drivers and young drivers would engage in and learn
about this fundamentally serious topic. The second part of the discovery phase of
their project shed light on actual models of impairment of drunk drivers. Its last
part posed the greatest challenge: Merging the seemingly conflicting concepts
of learning about the severe consequences of drunk driving on the one hand,
and the need for user engagement on the other hand. They achieved this by
two means. First, they decided to represent the game itself at a level of abstrac-
tion different from the effects of alcohol. In particular, the game implemented
widely-known “Mario Kart”-style game mechanics and a simple, cartoonish look
(Figure 2(a)), whereas the impairment of alcohol was reflected by realistic ef-
fects, including the deterioration of clear-sightedness, darkening the edges of the
vision, attenuating sounds, and prolonged reaction times (realised by increased
simulation speed), see Figure 3. Second, they introduced gamification elements
including timed laps and collecting high scores by picking up precious diamonds
from the track (Figure 2(b)). However, fundamental game mechanic to engage
the users was invented later during the experimentation activity of the devel-
opment phase. The students laid out the development phase very professionally
and, together with the other students, received bi-weekly feedback to stay on
track. Knowing that experiments could yield the key to an engaging user expe-
rience, the students tested various parameter settings of the driving model, its
reactivity to the user input, as well as different interaction modes between the
steered vehicle and the environment. From what they learned they were able to
invent a mechanism to ensure a challenging and well-directed user experience.
In particular, they translated the idea of collectibles on the track to their appli-
cation domain and positioned beer cans at certain locations (Figure 2(b)). Their
uptake would increase the blood alcohol level and driving would be impaired.
The impairments would render it difficult to complete a track within a certain
amount of time. Given the mechanics of driving, impaired driving, high-scores
and time-laps, the students just needed to find the right balance to finish the
development phase of their simulation. “Drink & Drive” was voted best entry in
the public presentations at the end of last term’s interactive simulation course.
In addition, it stirred a lot of excitement when it was offered for play as part of
the Girls’ and Boys’ Day at our university. Based on these successes, the students
feel that the most fundamental aspect that could drive a second development
cycle would be the port of “Drink & Drive” to mobile devices for reaching a
greater audience.



(a) (b)

Fig. 2. (a) A first-person default view is reduced to a simple steering wheel dashboard
and a few icons that represent the time left to complete the track (the heart icon in
the upper-left corner), the achieved score (the diamond icon next to the heart icon),
and the alcohol blood concentration (to the right-hand side). (b) Alcoholic beverages
and diamonds can be picked up from the road - the first increases the driver’s blood
alcohol concentration, the latter his score.

0.0h 2.0h 3.3h
Fig. 3. The alcohol blood level directly translates to impairments of vision, hearing,
and reactivity.

5 Conclusion and Future Work

In this paper, we presented an experience to adapt, teach and apply the CoSMoS
process in a graduate computer science course on interactive simulation. We
first laid out the multifaceted synopsis of the course before elaborating on the
central role of the CoSMoS process in the context of the students’ term-long
projects. Finally, we briefly presented some of the results of the students’ works
and expanded on one of them, exemplarily. The scientific claim, the notion of
self-organising processes with a focus on the interaction of numerous interwoven
parts, as well as the agility of the CoSMoS process lend themselves well for
backing interactive simulation projects.



Although both the results and the students’ feedback have been rather en-
couraging regarding the course contents, its layout and its general methodology,
we are eager to further improve several aspects. It might, for instance, be benefi-
cial to have certain activities of the different phases of the CoSMoS process take
place in groups during the tutorial sessions. Scoping during the discovery phase
has repeatedly proven difficult to students. An experienced teacher could guide
the process and ensure that multiple options are considered by each group. More
generally, we believe the CoSMoS process could still be more tightly integrated
in both the lectures and the tutorials, by providing an outlook of its application
to the lecture units’ contents. For instance, one could illustrate the application
of the CoSMoS phases not only to the project as a whole but also to individual
aspects such as computer graphics and visualisation—from the goals and ideas of
the used assets, the designed environment, over their creation and programming
to experimenting with their parameters.

So far, we have not considered building on the CoSMoS process for evalu-
ating the students’ works or their performances during the exams, except for
considering CoSMoS-supported project criteria (Section 3.1). Yet, the students
frequently utilised the structure of the process for classifying and presenting
their work. In particular, they frequently referred to its phases and activities
during their bi-weekly oral presentations and let their final project reports re-
volve around them. Hence, one research question that remains is whether and
to which extent the individual phases of the CoSMoS process could be coupled
a priori with the students’ evaluation.

Last but not least, the CoSMoS process could be expanded to even better
accommodate the development of interactive simulations. As they are typically
designed for learning and training, an according ‘engagement model’ could, for
instance, be an additional, desirable product of the discovery phase, complement-
ing the domain model. It could comprise learning targets, explicitly visualised
versus implicitly utilised data, the tasks and mechanics of the interfaces provided
for interacting and exploring the domain model, as well as means of motivation,
such as gamification elements. In combination with the domain model, such
an engagement model would provide for a clear conceptual foundation for the
development phase.
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