
Interactive
Self-Organisation
Dr. Sebastian von Mammen

author's copy



University of Augsburg

Faculty of Applied Computer Science

Department of Computer Science

Interactive Self-Organisation

Dr. Sebastian von Mammen

Submitted in part fulfilment of the requirements for the
Habilitation in Computer Science





Zusammenfassung

Selbstorganisierende Systeme müssen transparent, einfach zu gestalten und zu kontrollieren

sein, um einen größtmöglichen Nutzen für Modellierer, Entscheidungsträger und Anwender zu

gewährleisten. Um diese Ziele zu erreichen, müssen wir für die Modellierung und Simulation

von Systemen mit großer Anzahl von untereinander abhängigen Einheiten neue Perspektiven

einnehmen, neue Methoden erfinden, neue Konzepte erforschen und neue Werkzeuge entwickeln.

Diese Bestrebungen gipfeln in dem neuen wissenschaftlichen Feld der interaktiven Selbstorgan-

isation.

In dieser kumulativen Habilitationsschrift tragen wir zu den Grundlagen dieses neuen Forschungs-

bereichs bei. Wir motivieren interaktive Selbstorganisation dadurch, dass wir darauf eingehen,

wie zugänglich selbstorganisierende Systeme sind, da sie explizit die Brücke zwischen lokalen

Interaktionen und globalen Phänomenen schlagen. Indem wir selbstorganisierende Systeme in-

teraktiv gestalten, leisten wir einen wichtigen Beitrag, um komplexe Systeme verstehen und kon-

trollieren zu können. Selbstorganisation steht dabei nicht nur für eine Eigenschaft jener Modelle,

die wir berechnen wollen. Vielmehr verstehen wir sie auch als eine Perspektive, um die Model-

lierung und die Simulation komplexer Systeme grundlegend zu erweitern. Tatsächlich kann der

gesamte Entwicklungszyklus selbstorganisierender Systeme durch Methoden der interaktiven

Selbstorganisation bereichert werden. Einige der Ansätze, die in dieser Arbeit dargestellt wer-

den, könnten sich als Vorreiter herausstellen, um computergestützte Simulation in alltäglichen

Situationen zugänglich und nutzbar zu machen, ohne dass ihre Anwender umfangreiches Wis-

sen aus der Informatik und der Mathematik an den Tag legen müssen. Diese Art der indi-

vidualisierten Simulation kann nur verwirklicht werden, sofern zugängliche Repräsentationen

zur Modellierung in Form aussagekräftiger, interaktiver visueller Darstellungen zur Verfügung

gestellt werden. Herausforderungen der Informatik dürfen dabei den Zielsetzungen des An-

wenders nicht in die Quere kommen. Vielmehr müssen Methoden der interaktiven Selbstor-

ganisation gewährleisten, dass jeglicher Berechnungsaufwand vor allem dazu dient, jene Fakten

zutage zu fördern, an denen der Anwender interessiert ist und jene Probleme zu lösen, die
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der Anwender angehen will. Aus diesem Grund muss interaktive Selbstorganisation den An-

wendern ermöglichen, ihre Ideen sowohl bottom-up in das System einzuspeisen, also indem

der Anwender soviel Detailwissen, wie er als nötig erachtet zur Verfügung stellt, als auch top-

down, also indem Beschränkungen und die allgemeinen Ziele des selbstoranisierenden Systems

vorgegeben werden. Interaktive Selbstorganisation muss ferner ermöglichen, dass Simulations-

experimente rasch organisiert, ihre Ergebnisse nahtlos untersucht, die involvierten Einheiten

und Prozesse gründlich inspiziert und mit großer Präzision verändert werden können. All diese

Aspekte der Zugänglichkeit sollten den Anwendern zu jeder Zeit während des Entwicklungszyk-

lus eines Systems zur Verfüngung stehen, sodass die Phasen der Modellierung, der Simulation,

der Exploration, der Verbesserung und der Anwendung zusammenfließen.

Die vorliegende Arbeit besteht aus fünf Teilen. Teil I führt das Thema der interaktiven Selbstor-

ganisation ein. In Teil II werden Anwendungsszenarien rund um interaktive Selbstorganisation

präsentiert, die breit gefächerte Anwendungsdomänen vertreten - von Kunst über Architektur,

Biologie und Medizin bis hin zur Robotik. In Teil III stellen wir Ansätze der interaktiven Selb-

storganisation zum Zweck der Modellierung vor. Diese decken vielerlei Aspekte des gesamten

Entwicklungszyklus wissenschaftlicher Modellierung und Simulation ab. Nach einem Überblick

über den Entwicklungszyklus von interaktiven Simulationen, welcher sich ebenso auf interaktive,

selbstorganisierende Systeme übertragen lässt, betrachten wir schrittweise zunächst die Mod-

ellierung individueller Verhalten, dann einen Ansatz zur visuellen Programmierung von selb-

storganisierenden Systemen im dreidimensionalen Raum und ergänzen diese schließlich mit der

Einführung aussagekräftiger visueller Symbole. Die letzten zwei Kapitel des dritten Teils sind

eher technischen Aspekten gewidmet, beispielsweise der Verwaltung und Integration grundver-

schiedener Simulationsalgorithmen (Engines) auf Grundlage sogenannter Komponenten, sowie

dem Speichern, Laden und Organisieren von Simulationsmodellen und -experimenten. Jedoch

haben wir auch hier, wie bei vielen anderen Aspekten rund um interaktive Selbstorganisation,

die technischen Lösungen mit attraktiven und einfach zu handhabenden Schnittstellen verse-

hen. Insgesamt ermöglichen die dargestellten Techniken es, einen Blick in die nahe Zukunft

zu werfen, wenn all diese Aspekte unter dem Dach einer einzigen, umfassenden Modellierungs-

und Simulationslösung zusammen geführt werden. In Teil IV diskutieren wir Möglichkeiten
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der Optimierung von selbstorganisierenden Systemen. Insbesondere betrachten wir Aspekte

wie den Übergang von lokalen Verhalten hin zu globalen, systemweiten Eigenschaften. Wir

präsentieren Lösungen für Probleme wie das Lenken von selbstorganisierenden Prozessen (Guid-

ing Self-Organisation), wie der Anwender Bedingungen an das System stellen kann, und wie

damit einhergehende Erwartungen rechnerisch erfüllt werden können. Die Ansprüche an die

Berechnung der Dynamik selbstorganisierender Systeme kann schnell und scharf ansteigen, da

es eine Vielzahl von Abhängigkeiten unter den Modelleinheiten geben kann. Deshalb beleuchten

die letzten Kapitel des vierten Teils der Arbeit insbesondere die Möglichkeit, den Detailgrad

beliebiger Verhaltensmodelle eines Systems zur Laufzeit zu optimieren. Teil V beschließt die

Arbeit mit einem Ausblick auf mögliche zukünftige Forschungsziele.

iii



Abstract

Technical self-organising systems need to be transparent, malleable and controllable by human

designers, decision makers and users. In order to achieve these goals, we need to gain new

perspectives, invent new methods, research new concepts, and develop new tools for modelling

and simulation of systems comprised of large numbers of interdependent units. These e↵orts

culminate in the emerging scientific field of interactive self-organisation.

In this cumulative habilitation work, we contribute to the foundation of this new field. We

motivate interactive self-organisation hinting at the inherent accessibility of the concept of self-

organisation as it bridges the gaps between local interactions and global phenomena. By making

self-organisation interactive, we take an important step towards making complex systems un-

derstandable and controllable. At the same time, we do not only understand self-organisation

as a property of the target models that we try to compute, but also as a perspective to advance

modelling, simulation and complex system analysis per se. In fact, the complete development

cycle of self-organising systems can be shaped by methods of interactive self-organisation. Some

of the methods presented in this thesis may be precursors to rendering computational simu-

lation accessible and usable in everyday situations by people without extensive knowledge of

compute science and mathematics. This kind of individualised simulation can only arise from

accessible modelling representations, presented as semantically meaningful, manipulatable visu-

als. Computational concerns may not interfere with the goals of the users. Rather, interactive

self-organisation methods need to ensure that any computational e↵orts focus on unearthing

the facts the users are interested in and on solving the problems the users need to address.

Hence, interactive self-organisation needs to empower users to introduce their ideas both from

the bottom-up, providing as much detail as they deem necessary, and top-down, specifying

constraints and general goals of a self-organising system. It further has to provide the means

to swiftly organise simulation experiments, to seamlessly explore their results, to rigorously in-

spect the involved units and processes, and to concisely manipulate them. All of these aspects

of accessibility should be at the users’ disposal at any time of the development cycle of a system
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to amalgamate the phases of modelling, simulation, exploration, refinement and application.

This work is comprised of five parts. Part I introduces and motivates the notion of interactive

self-organisation. In Part II, several application scenarios around interactive self-organisation

are presented, covering application domains as broad as art, architecture, biology, medicine

and robotics. In Part III, we put forward interactive self-organisation approaches to modelling.

These revolve around the whole development life cycle of scientific modelling and simulation.

After an overview of the life cycle of interactive simulations, which also applies to interactive

self-organising systems, we step from modelling individual behaviours of involved units over

an approach to programming self-organising systems visually in three-dimensional space to the

introduction of semantically rich symbolic visuals. The last two chapters of Part III are dedi-

cated to rather technical aspects that are usually considered back end technologies such as the

management of di↵erent computational engines and their combined integration based on the

concept of components as well as storage, retrieval and organisation of simulation models and

experiments. However, in agreement with all the e↵orts around interactive self-organisation, we

also merge the proposed back end functionalities with attractive and easy-to-use front-end inter-

faces which allows for a glimpse into the near future when all these aspects will be consolidated

by a single, comprehensive and accessible modelling and simulation application framework. In

Part IV, we discuss optimisation of self-organising systems. In particular, we tackle aspects

such as the bridging from local behaviours and global, system-wide properties. We present so-

lutions to the problems of guiding emergence, of introducing constraints to a system, and how

the external expectations can be met. As the computation of self-organising system dynamics

can steeply and quickly rise, given that there may be numerous interdependencies between the

modelled units, the last chapters of Part IV shed light on the means to optimise the level of

detail of arbitrary behavioural system models during runtime. In Part V, we conclude with a

visionary outlook on future work.
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Chapter 1

Introduction

Schools of fish, flocks of birds, and social insect colonies—these systems consist of large popu-

lations of possibly heterogeneous, mostly simple, reactive agents. The interactions of the indi-

viduals may result in system-wide emergent phenomena such as e�cient mass transport [11],

e↵ective foraging [12], population-wide defence strategies [13] or the construction of complex

adaptive nests [14]. The lack of a central control, the decentralised, locally acting individuals,

together with the possibility of emergent phenomena render swarms a metaphor for self-orga-

nising systems. As such, the swarm metaphor bridges between local interactions and global

outcomes, between diversity and homogeneity, between the individual and the population. It

highlights the discrepancy and the liaison of di↵erent levels of abstraction. Due to the spatial

and traceable nature of swarms, this metaphor provides a perspective on scientific models that

promises accessibility, flexibility, and scalability of complex systems. Consequently, computa-

tional swarms are not only a metaphor for self-organisation but for self-organisation at our

fingertips, or interactive self-organisation.

Interactive self-organisation describes the e↵ort to making large, self-organising

technical systems transparent, malleable and controllable by human designers, de-

cision makers and users. It considers all aspects of the life cycle of according systems and

their components. Its development starts with the generation of a domain model, continues

with its translation into a platform model, with a subsequent implementation for a specific sim-

2
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ulation platform and it culminates in its evaluation [15, 16]. After stepping through the phases

of the development life cycle at least once, the utilisation of the interactive self-organising sys-

tem may begin in the targeted application context. Its application, in turn, may further nourish

and drive the development life cycle by providing ever more elaborate and detailed insights into

its numerous functionalities and desirable features.

Each phase of this development life cycle bears special challenges in the context of interactive

self-organisation, such as the means to create decentralised, self-organising models that underly

certain observed or desirable, global phenomena. The great numbers of interacting units as well

as the dynamics that arise from their interactions strongly contrast the development and deploy-

ment of monolithic systems. Furthermore, the multitude of interdependencies of the resultant

models gives rise to great computational costs which challenges the e�ciency and scalability

of their simulation. The analysis of the witnessed system dynamics needs to consider both the

complexity of the systems’ evolutions of state and of topology [17, 18, 19]. Independently of the

targeted production system, each of the phases of development, broadly summarised as discov-

ery, development and exploration, need to be made accessible to the developer/user as he has

to devise, implement, test and refine models. In order to minimise the cognitive load of the de-

veloper/user [20, 21], interactive visuals should be o↵ered for working with the data at realtime

speeds. On top of the development life cycle of products dealing with self-organising systems, it

is typically desirable to provide a user interface that empowers to interactively navigate, select,

manipulate and control all aspects of the targeted, self-organisation-based production system

itself.

Figure 1.1 schematically shows the three phases of the development life cycle alongside the ap-

plication of a system of interactive self-organisation. For each phase, a self-organising system is

depicted, comprised of several interacting entities, or agents, which are exemplarily represented

as ants. Arrows between pairs of ants imply a relationship between them. During the discovery

phase, by retracing the system’s states and its agents’ relationships, the modeller/developer

strengthens his understanding of the modelling domain and the research context. During the

development phase, he devises a model that captures all of the required relationships between

the model constituents. At this point, observations about the real-world (grey-dashed arrows
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Discovery

Development

Exploration

Application

Figure 1.1: The life cycle of interactive self-organisation systems including three development
phases discovery, development and exploration alongside the application phase.
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of the discovery phase) are translated into a computational representation (indicated by the

blue and red arrows). The computational representation inherently preselects, simplifies and

discretises real-world processes. In addition, it mirrors relationships that emerge over time and

in various situations in a single descriptive instance. This fact is given credit by the di↵erently

coloured (blue and red) arrows that represent model relationships that cannot be observed con-

currently but become part of one and the same model instance. During the exploration phase,

simulations may reveal novel aspects to the modeller/developer that were only implicitly present

in the model, indicated by the extended diagram, now also exhibiting orange and pink relation-

ship arrows. Finally, during application, the user of an interactive self-organisation system can

harness the previously established models and simulation capacities and directly impact a self-

organising system in realiter, for instance by setting the trajectories of individuals of the system

as indicated by the green arrows in the last diagram of the development-application life cycle.

Areas of application of interactive self-organisation are, for instance, pervasive, networked sen-

sors and computing infrastructures [22, 23], micro- or nanobots for medical procedures [24],

swarms of quadcopters for scouting, escorting, surveillance and reporting [25], or interactive,

adaptive built environments [26].

1.1 Interactive self-organisation & Simulation

As self-organising systems swarm with large numbers of interacting units, the field of interactive

self-organisation aims at researching technologies that support an n : m-relationship of n users

to m controlled objects or agents, whereas m >> n. The approaches of interactive self-orga-

nisation, thus, need to make large numbers of objects traceable and controllable by few users

or possibly only one user. For the user to understand, visualise and e↵ectively interact with

self-organising systems, appropriate models have to be devised first. Second, computational

simulations fed with these models can be used to identify and optimise the emergent system

dynamics and to maintain real-world self-organising systems within desirable parameter bound-

aries. The following paragraphs elaborate on this insight, introduce the notion of individualised

simulation, the need for agent-based modelling, and the history of interactive simulation.
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1.1.1 Individualising Simulation

Simulation can play an important role during each step of the development and deployment

cycles of technical systems [27] as it allows one to predict a design’s feasibility, the resultant

system’s functionality [28], and the impact of any changes during runtime [29]. Historically,

simulation technologies have interspersed academia and industry, whereas private users have

mostly been exposed to them in the context of computer games, for instance in terms of

flight and driving simulations [30, 31]. Yet, individualising simulation technology bears the

potential of myriad innovations. Centrally issued rules and norms that govern societies can be

augmented by individually and independently developed optimisations to adapt to a plethora

of local challenges.

Consider, for instance, innovation opportunities in infrastructure and architecture in smart

homes [32], the potential of 3D printing technologies [33], or the advantages of individualised

medicine [34]. One could harness the power of computational simulations in these and similar

transformative fields of application based on understandable, easy-to-use systems to model the

status quo, to gain unmatched insight in the given problems, and to receive intelligible advice.

Each person could utilise, create and adjust models revolving around their lives and use them

to find various optima to drastically improve their life situations—for instance by reducing

individual energy footprints [35], by tapping into fresh water supplies [36], or by automated

production of artificial limbs [37].

1.1.2 Bottom-Up, Agent-Based Modelling

There is a strongly diversified market for modelling and simulation softwares tailored towards

specific application domains. Frameworks such as Mathematica [38], Matlab [39], GNU Oc-

tave [40], Sage [41], Magma [42] or Maple [43], define the programmability and accessibility of

mathematical modelling and simulation applications. Add-ons provide specific user interfaces

and concrete algorithms for rather narrow application scenarios, for instance plugins for EEG

analysis [44] or for processing volumetric data [45]. Such add-ons assist the users in focusing
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on relatively few parameters important for particular application scenarios, or models. As a

drawback, unforeseen alterations or extensions beyond the given parameter spaces are impos-

sible without changing the add-ons’ sources, which is typically a rather involved procedure for

any code bases, requiring intensive investigations and programming expertise [46].

Here, bottom-up modelling approaches [47, 3, 48], including finite element models [49], particle-

based models [50, 51], microscopic models [52], multi-agent models [53], which describe proper-

ties and behaviours of individual objects, bear several advantages over modelling at the system

level. The most generic way to capture bottom-up models follows the latter, the agent-based

model definition, describing an individual as a quadruple consisting of the set of possible sit-

uations Sit, the set of possible (internal) data states Dat, the set of possible actions Act and

a decision function f
Ag

= Sit ⇥ Dat ! Act [54, 55]. Based on this generic definition, an

agent can assume di↵erent kinds of characteristics and be described, e.g., as passive, reactive,

proactive, reflective, etc. Agent-based systems can be altered without great e↵orts—regarding

the numbers of agents, regarding the heterogeneity of agent populations, the state configura-

tion of the overall system, and in terms of individual agents’ states and behaviours. Another

advantage is the means to directly translate properties and mechanisms of the application do-

main into the domain model and platform model alike. Due to its flexibility and accessibility,

agent-based modelling has received a lot of attention from fields as diverse as economics, social

sciences, and life sciences [56].

A considerable number of modelling and simulation systems specifically support agent-based

modelling. Examples are NetLogo, RePast, MASON and the Swarm simulation platform: The

original NetLogo programme provides an embedded scripting and visualisation environment

that lets agents interact on a discrete 2D lattice grid [57]. The RePast simulation suite o↵ers

various visualisation and modelling interfaces, including modelling with flowcharts and state

charts [58]. It also provides an accessible scripting interface inspired by NetLogo as well as

a Java implementation and an optimised C++-based kernel for high-performance simulations.

MASON, a discrete-event multi-agent simulation library for Java, provides useful support for

2D and 3D visualisation [59]. The Swarm simulation system focusses on the behaviours and the

horizontal and vertical relationships of agents in larger systems [60]. An overview of agent-based
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modelling and simulation tools is provided by [61] and [62].

1.1.3 Interactive Simulation

The ease of access to agent-based modelling combined with the great potential of individu-

alised simulations has begun to revolutionise the field of interactive simulations, which is best

witnessed by the outstanding successes of game and simulation engines since the early 2000s

[63, 64]. They o↵er modelling 2D and 3D graphics scenes, enrich them with basic Newtonian

physics and with scripting of agent-based behaviours in integrated development environments.

In the 1960s, interactive simulations entered the stage of scientific endeavours [65]. Early

simulation and animation frameworks such as CINEMA [66] rendered simulations in a post-

processing step to make emergent e↵ects traceable and transparent. Communicating complex

processes especially in the area of operations research motivated the idea to let the user partake

at each step of the simulation loop, resulting in human-in-the-loop simulations [67]. SEE-WHY

is an according, early visual interactive simulation system [68] which successfully exploited the

convincing, often surprising dynamics arising from user interaction with simulation models in

realtime.

To summarise the insights of preceding works by Bell [68], Jones [65] and others [67], interactive

simulations innovate the field of modelling and simulation regarding the following aspects. In

interactive simulations, model specification happens during runtime, while the user is interact-

ing and while the e↵ects are being animated. They provide for a better understanding and

evaluation of human behaviours in complex situations such as emergencies. They allow one

to consider new aspects, visually highlighting phenomena that are usually not accounted for.

Along these lines, they help communicate concepts and challenges, stress inconsistencies and

to gain managerial commitment. They generally have a wide appeal and let users participate

and shape contents rather than merely watch and consume information.

In the context of interactive self-organisation, interactive simulations become an essential com-

ponent for empowering people with technology to shape reality—without running simulations



1.2. Interactive self-organisation for the Wetlab 9

and making predictions about complex system dynamics in realtime, it would not be feasible

to understand and interactively control complex self-organising systems in real-world scenarios.

1.1.4 Open, Interactive, Accessible

The swarm paradigm provides a bottom-up modelling perspective that builds on self-organisa-

tion and emergence of system properties. Following an agent-oriented perspective, instead of

detailed lists of arithmetic operations, the user can focus on descriptions of system components

and their interactions at high levels of abstraction. The resulting decentralised networked

models are open and flexible, merging modelling and realtime exploration into user-centred

modelling & simulation processes, which aptly complements the idea of agile software develop-

ment [69]. Thereby, the necessary accessibility is warranted not only by a rigorous translation

between the actual system and the domain model and according visualisations but also by

an explicit involvement of the user, proactively roaming and a↵ecting the modelling space.

Numerous examples of such interactive simulation scenarios are provided by 3D multi-agent

environments such as breve [70] or Starlogo TNG [71]. Accessibility is thus conterminous with

transparency and applicability, emancipating the user from the distinguished art of traditional

modelling and simulation approaches.

1.2 Interactive self-organisation for the Wetlab

In an ideal, unbound interactive self-organisation scenario, the user could quickly prototype

a comprehensive simulation model, fleshing out spatial details and behaviours of hundreds of

thousands of involved agents. Next, he would be given the opportunity to witness the emer-

gence of system behaviours such as cyclic process patterns, branching points, or the convergence

of the system state into global attractors [72]. He would also be given the opportunity to au-

tomatically repeat and evaluate the simulation within pre-defined parameter ranges, to extract

novel insights by learning hypotheses that maximise the information gain [73], and to consider

any modelling e↵orts as only a small, sub-model part of a grander, multi-scale system [74, 75].
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The user’s e↵orts would be supported by meaningful, rich visualisation techniques [76, 77] and

multi-modal, natural user interaction techniques [78]—in this way, he would be empowered to

interact, hone and explore the system model in any desirable ways, posing as little cognitive

and motor-sensory challenges as possible [20]. Novel augmented reality technology including

head-mounted devices, eye and finger tracking sensors would bridge the gap between simulated

predictions and real-world systems, providing invaluable data for learning, decision making and

guiding the user’s actions [79, 80].

In the context of biological developmental processes [81, 82], for instance, the ideal simulation

workbench would allow a modelling entry at the intercellular level, o↵ering the means to model

layers of mesenchymal and epithelial tissues, empower individual cells with the capabilities to

adhere to each other, to divide, to migrate, to produce and emit morphogens etc. [83]. The

model would relate these foundational operations to time, to biochemical or biophysical signals

such as the di↵usion of homeobox gene concentration [84] or mechanical forces [85]. Based on

such intercellular interactions, morphological processes would emerge, shaping anatomy and

physiological infrastructure of developing organisms [86]. Fast forwarding in time, the obvious

e↵ects of morphology-a↵ecting developmental processes would wane, a metabolic equilibrium

would establish itself. The model could be extended to provide more facts at di↵erent levels

of scale [87], for instance by detailing the production pathways of signalling molecules or by

introducing materials that define the cell’s structural properties [88]. Similarly, empirically

identified emergent properties such as the cell’s surface tension, or its adhesion coe�cient,

could be superimposed, the parameters of the lower modelling levels be automatically adjusted

top-down, resulting in a consistent, self-adapting middle-out model [89]. At any point in time,

disruptions of the developmental processes could be explored, the formation of anomalies could

be traced and countered with minimally invasive treatments, without loosing sight of side-e↵ects

at all conceivable scales of the organism’s definition.

The tandem of in-vitro and in-silico experiments would ensure the validation of each component

of the model and the simulation, respectively, resulting in a profoundly accurate model and

providing clear perimeters of the experiments’ outcomes and the simulations’ predictive powers.

A sophisticated, accessible and flexible augmented reality interface could mediate between in-
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vitro and in-silico models, allowing developmental biologists to setup and experiment relying

on standard assay procedures. The scientist’s activities would be supported and guided by the

augmentation of in-vitro experiments and the projection of in-silico simulations, imparting all

the benefits of computing technologies, including virtually limitless resources, the possibility

to go back and forward in time and to venture into new exploratory directions. Depending on

the application domain, the wide-spread adoption of swarm-based modelling and simulation

could also lead to far-reaching model improvements that could accelerate overcoming the gap

between in-vitro and in-vivo predictions.

1.3 Research Challenges

Several steps need to be taken in order to arrive at the outlined application scenario of interac-

tive self-organisation for the wetlab. They are as broad as devising a standardised representation

for self-organising system models, identifying and honing visualisation and interface methods,

and maintaining computability despite large degrees of freedom.

1.3.1 Representation & Standardisation

Devising and establishing an expressive and broadly deployable representation for self-orga-

nising systems is an important step for building interactive, large-scale, open systems. Cur-

rent generic approaches to modelling self-organising systems typically do not constrain the

behavioural definition of the agent implementations but allow for unconstrained algorithmic

definitions, again consider, e.g. [70, 71]. This leaves the responsibility to the modeller to

clearly define the scope of the agents’ knowledge and the degree and the e↵ect of their inter-

actions. Although convenient for the modellers at first, the lack of a formal foundation often

implies poor means of scientific scrutiny and accordingly low significance and transferability of

any results.

The similarity of representations utilised by researchers who diligently align their implementa-
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tion work with formal descriptions, including conditional rules [90], condition-action pairs [91],

subject-predicate-object triples [92], or numeric decision functions [93], may have concealed the

view on a general formal representation. Especially, since in complex systems—and self-orga-

nising systems with large numbers of interdependent units tend to qualify as such [94]—subtle

di↵erences in data management and its interpretation may inadvertently result in dramatically

di↵erent results, as for instance investigated in the context of motion of Brownian particles [95].

Therefore, the broad adoption of a specific behavioural representation to layout the interactions

among self-organising agents in combination with a simple execution algorithm—speaking of

solving or simulation would be a gross overstatement in this context—would be a great ad-

vancement towards scalable interactive self-organisation. If the representation further allowed

for extensible definitions, axiomatic primitives could provide a foundation to build standard-

ised high-level operators for various application domains. The accompanying denotational and

operational semantic richness would be an important step towards the broad and fruitful dis-

semination of self-organising system models and their simulations.

1.3.2 Visualisation & Interfaces

A well-defined representation answers the need for an extensible, consistent formal foundation.

It enables the application of rigorous analyses and proofs and ensures the possibility of a

scientific discourse as provided by traditional, mathematically expressed models and theories.

Additional e↵orts need to be made in order to support modelling, simulation and application

of self-organising systems interactively. New methodologies for visualisation and interaction

need to address novel aspects including inherently open interaction topologies, the focus on

emergent e↵ects and interwoven, flexible interfaces of agents, which also promote the tight

integration of user-centred interferences at arbitrary phases of model building and simulation.

Therefore, in addition to formal standardisation, an equally generic definition of an application

programming interface is needed to provide the foundation for new visualisation methods and

human-computer interaction processes. First explorations towards corresponding human-swarm

interfaces, which are tailored towards application-oriented domains, such as robotics, have
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already been made, see for instance [96, 97, 98, 99].

The discrepancy between the individuals’ and the collective’s states and behaviours, or, respec-

tively, between any high-level goals and low-level, individual control, remains a challenge that

builds on a diverse set of research questions, including the translation between di↵erent degrees

of abstraction [100] as well as the inverse problem [101, 102], which aims at inferring local rules

based on global requirements. The user will benefit most, if beautiful visualisations can be

found to e↵ectively communicate these relationships, wrap them in attractive looks and, at the

same time, decrease the cognitive load of the user [103].

Especially graph and network based visualisation techniques seem appropriate to communicate

states, relationships and interactions among large numbers of simulated units. They o↵er a

means to reflect the relationships in self-organising models and a means to investigate hier-

archically organised clusters instead of solely focussing on individuals [104]. Next to concrete

methods of visualisation, e↵ective interaction demands for simplicity and consistency regarding

the interfaces to models and simulations. Traditionally, there have been separate interfaces for

visualisation and editing with respect to modelling/design, simulation, exploration and analy-

sis. Visual programming with flow-based visual languages came up in the late 1960s [105]. Since

then, it has permeated through a vast number of fields of application [106, 107, 108]. Generally

speaking, visual programming merges visualisation and editing environments. Object-oriented

visual programming has been discussed on multiple occasions, e.g. [109] and [110], and so have

been agent-based visual modelling environments [111, 90]. The according interfaces build in-

creasingly stronger links between the model-building interfaces and the simulation inspectors,

for instance by utilising icons of simulated agents when visually composing their interaction

rules [111]. Taking this idea one step further and projecting the visual editor into the actual

model space representation, the interfaces for modelling and simulation can be merged, unified

and their accessibility be improved. Especially in the context of interactive self-organisation,

this convergence is of great importance, as both model and simulation need to be projected

into real-world spaces, as for instance in [112].
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1.3.3 Scaling D2S

Given a rigorous formal foundation, a standardised programmatic methodology, accessible

means of interaction and e↵ective, beautiful means of visualisation, one major obstacle would

still keep interactive self-organisation strongly limited, namely computational complexity.

Due to the great degrees of freedom bestowed on the individuals in self-organising systems,

including potentially changing interaction topologies, the arising swarm simulations can be

considered dynamic systems with dynamic structures, or D2S, the most volatile and therefore

most challenging class of complex system representations [113, 114]. In the context of optimi-

sation, such tight coupling of state space and the space of interaction topologies may alter the

space of possible solutions during the actual search for better results. This phenomenon is also

referred to as a self-referential fitness landscape [115].

Often, the actual costs of D2S simulations are far from the worst case complexity, as the

agents’ states may remain fixed among certain subsets of agents and over long periods of time.

Equally, their interaction topology might, to a great extent, remain static. However, even in

models as simple as virtual flocks of birds that concert their collective movement based on

the individuals’ relations to their neighbours [1], the resultant computational complexity takes

its toll. Accordingly, various means of e�cient calculations have been investigated, including

porting such flock simulations to graphics processing units (GPUs) or applying spatial data

structures to reduce the complexity of continuously re-calculating the interaction topologies

[116].

Although other swarm-based models may not exhibit the same degree of spatial interdependence

between the individuals’ states and their interaction topologies [117], they all su↵er from the

potentially great computational complexity of D2S. Excluding biological interdependencies,

focussing on the dynamics of physical states and spatial relationships, this challenge is similar to

the n-body problem for predicting celestial trajectories based on mutual gravitational influences

[118]. Next to exhaustive O(n2) calculations for rather accurate solutions, the existing body of

works dedicated to this problem also suggests approximations based on spatial data structures
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that allow for well-informed pruning of less significant interactions [119]. Pruning based on

spatial data structures also represents the standard approach to solving for collisions between

geometric objects as used in realtime computer graphics and physics environments [120].

These examples show that in order to scale system models revolving around spatial interde-

pendencies, spatial relationships are categorised, partitioned and exploited. Considering that

spatial relationships are but one, albeit often important, aspect of interactive self-organisation,

the link between operational semantics and optimisation opportunities needs to be generalised.

Any state that cannot be captured spatially, including, for instance, the number of cycles a

cell has already passed through, the adhesive force towards its neighbours, or its proteomic

configuration, may lead to system attractors that can be exploited for e�ciency reasons, too.

The great degrees of freedom inherent in the individuals of computational swarms are partially

responsible for the generated computational costs. Yet, they are a key ingredient for defining

models that can exhibit valuable insights in the emergence of system-wide states. At the

same time, the occurrence of emergent phenomena, the convergence of swarm systems into

attractor states and cycles, also provides a semantic lever for applying dearly needed model

optimisations [121]. In particular, new insights in the evolution of an open system can help

to constrain, and thereby simplify, its underlying model’s freedom. The automation of this

process based on demand, i.e. to simplify whenever computationally necessary and to relax

the model complexity whenever semantically relevant, mirrors the scientific method applied by

humans for centuries to find out and utilise facts about reality. Only now, it is designed to

automatically adapt and to help reveal information beyond current knowledge through large-

scale swarm-based computational simulations.

1.4 Scope of this Work

This habilitation work cumulates research e↵orts that contributed to the field of interactive self-

organisation within the past six years. The greatest challenge so far has not been of technical

nature, for instance about representation, interfacing or scaling. But it has been a challenge
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of context and interdependencies: Hardly any of the technical challenges could have been

e↵ectively investigated by itself. Without considering the means of representation, a generic way

of automated model abstraction and optimisation could not be innovated. Without considering

the users’ needs with respect to their modelling abilities and their modelling domains, e↵ective

representations, visualisations, interfaces, and optimisation algorithms could not be devised.

Therefore, the cumulated works presented herein revolve around various application domains,

such as medical education, biological research, art, architecture, or robotics. Concrete appli-

cation domains are presented in Part II. The next chapter will conclude Part I, providing the

background and the overview of all the presented works. Part III will focus on the aspect of

modelling of interactive self-organisation and touch upon topics such as model and simulation

development, graph-based representations, modelling in 3D simulation space, visual behavioural

programming of agents, and data management for interactive self-organisation. Part IV will

focus on aspects of optimisation of self-organising system models—either in terms of model

parameter optimisation or in terms of adaptive model optimisation during runtime.

Next to fleshing out and investigating concrete interactive self-organising systems, modelling

and simulation techniques of interactive self-organisation represent the lion’s share of the in-

cluded chapters. Naturally, each of them focusses on a specific aspect, such as graph-based

representation, visual programming, or abstraction of agent interactions. Yet, these works

have been cross-fertilising identification of demand, requirement specifications, and concepts

at di↵erent levels of abstraction. The next chapter details the interplay of these cumulated

works.
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Overview

Considering the multi-facetted goal of interactive self-organisation—namely making large, self-

organising technical systems transparent, malleable and controllable by human designers, de-

cision makers and users—it is clear that a considerably large research community contributes

to this field through novel algorithms, techniques and application scenarios at various levels of

abstraction and tackling various perspectives on the subject matter. In this habilitation thesis,

published research works are cumulated that consider three concrete perspectives on interactive

self-organisation: Part II of this thesis presents several publications with a focus on application

scenarios that exemplarily show where and in which ways interactive self-organisation matters.

Part III introduces di↵erent aspects relevant to modelling interactive self-organising systems.

Part IV reflects on the need for optimisation in the context of computing interactive self-or-

ganisation systems. In this chapter, we briefly summarise these respective parts’ contents.

We elaborate on their relationships and draw the big picture on how these contents require

and stimulate one another and how they might eventually be considered small steps towards

ubiquitous, empowering interactive self-organising systems.

17
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2.1 Overview of Part II: Application Perspectives

The presented application scenarios reach into the following domains: Medicine, developmen-

tal biology, architecture, art, power grids, ecology, and robotics. The goals of the respective

interactive self-organising systems are: Research, education, training, planning, construction,

maintenance, exploration, and entertainment. Figure 2.1 classifies the chapters of Part II of

this thesis with respect to application domains and goals, whereas the goals are abstracted

to the notions of design, training, and research represented by the three corners of a triangle.

The contrasting, yet complementing goals of training and research can easily be understood

to occur on opposite ends of the spectrum. The third overarching goal, namely design, results

from the fascination by the author to manipulate and reinvent reality. Research generates and

validated knowledge, training disseminates and internalises knowledge, and design can be seen

as an outlet channel that allows to transform reality based on knowledge. Hence, while all

three displayed goals are addressed by research studies targeting the application of interactive

self-organisation, they complement each other, and in parts, they also build on each other. We

tried to structure the presentation of the respective research works keeping these relationships

in mind.

First, in Chapter 3, we introduce work on the Lindsay Virtual Human, a visionary project

aiming at the full realisation of interactive self-organisation for research and training in the

life sciences. The subsequently presented works address two aspects in more detail: (1) The

simulation of physical interactions in virtual environments (staged in the context of dental

operations) in Chapter 4, and (2) the modelling and design process arriving at computational

representations to retrace biological developmental processes in a self-organising, agent-based

manner (Chapter 5). The respective chapter is followed by an overview of self-organisation

models crafted by architecture students (Chapter 6). The rationale bridging developmental bi-

ology and architecture is rooted in the fact that both disciplines consider construction processes

and resultant artefacts. Looking at myriads of biological, chemical, and physical interdepen-

dencies that result in robust, adaptive development of organisms may, by a long shot, exceed
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Figure 2.1: The content domains of the Chapters (numbers) of Part II of this thesis with respect
to their goals: Training, Design, and Research/Exploration.

the complexities handled by human architects but the very same principles of additive and

subtractive construction apply. Moreover, architecture also considers a multitude of objectives

next to the generally known criteria of structural integrity and energy e�ciency—building us-

age, its users’ experience, legal constraints, integration into the built environment are examples

of additional factors that are considered by architects, also relying on interactive models and

simulations of self-organising systems. The architectural perspective is followed by an academic

excursion into the fine arts in Chapter 7, where three artists explore the dynamics of interac-

tive self-organising systems relying on established art media. The playful artistic exploration

of self-organising processes is followed by two examples of so-called serious games, in which the

user is given the opportunity to interact with self-organising systems. In the first, presented

in Chapter 8, the user is entrained to maintain the ecological balance in an aquarium. In the

second (Chapter 9), he builds up experience in setting up and modifying power grid infrastruc-

tures. We conclude the series of exemplary application scenarios of interactive self-organisation

with Chapter 10, presenting an overview of OCbotics, where, based on the principles of Or-

ganic Computing, self-organising robots and robot ensembles are designed to dynamically react

and self-adapt to changing goals and situations. These robotic systems interface with their

users to receive, depending on the situation, high-level goals or detailed low-level instructions.
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In the following paragraphs, we elaborate more in-depth about the contents of the respective

chapters/publications and how they contribute to the field of interactive self-organisation.

2.1.1 The Lindsay Virtual Human Project

Chapter 3 presents the early e↵orts by the Lindsay Virtual Human project to make medical

contents accessible through visualisation and interaction. These e↵orts comprise the design and

development of interfaces to navigate and explore the human body at di↵erent spatial scales.

In addition, the Lindsay Virtual Human project researches model representations, modelling

languages and interfaces, runtime environments including rich content management options,

including fast storage and retrieval, automated versioning, distribution and optimisation tech-

niques apt for making physiological processes computable in realtime and to making them

accessible in interactive ways. These processes describe, for instance, the secondary response of

the immune system, blood coagulation in the context of the circulatory system, or biochemical

propagation of electric charges in the nervous system. The variability of these processes is

exposed to the user, allowing him to interact within broadly defined parameters.

The interactivity the project aimed at, rendered traditional, solely equation-based system rep-

resentations inappropriate, as the degrees of freedom would have been drastically reduced and

the means of interaction narrowed down to adjusting system-wide parameter values. Modelling

physiological processes by means of simple, reactive agents that closely follow empirically veri-

fied biomedical models allows for an extended interactive exploration and learning experience.

Here, the user’s interactions are not limited to the parameters of specific classes of agents and

system-wide interaction coe�cients. Instead, the user can alter individual agents’ behavioural

configurations, their physical properties, and their states, resulting in vastly heterogeneous

models. He may also scale the numbers of interacting agents up and down on-the-fly, assign

concrete locations or spatial areas, probabilities of occurrences, and even introduce random

variations. Behind the scenes, models could be described at arbitrary levels of abstraction—

whether considering biochemical interactions at the molecular level, complex behaviours of

cells, or state-based dynamics of organs. In addition, di↵erently represented models wrapped
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as agents could be considered in a generic agent-execution loop. As the agent representation

makes attributes and states readily available to all model entities, interfacing across multiple

scales of time and space would solely pose a logistical but no representational challenge.

Over the years, the Lindsay Virtual Human project yielded several computational training

tools which have been utilised to enhance the learning experiences of students of biology and

medicine. In addition to the interactive anatomy atlas and tools for authoring and exploring

physiological processes presented in Chapter 3, alternative modes of access to the simulated

and visualised contents have been introduced. For instance, the means of (remote) collabo-

rative work based on distributed web-services is elaborated on in more detail in Chapter 15.

In addition, an augmented reality implementation has been presented that allows to project

detailed information on human cadavers to enhance basic anatomy training [122]. Next to the

human immune response, which has been modelled and evaluated in rich detail in the context of

the Lindsay Virtual Human project [123] and which has served as a basic model for presenting

novel modelling techniques of interactive self-organising systems in Chapter 13, other systems

have been simulated, such as neural pathways [124] or the inner workings of Escherichia coli

bacteria that populate the human intestines [125]. Educational studies on the e↵ect and the

requirements for introducing novel interactive teaching media, such as the LINDSAY Presenter,

an interactive anatomy atlas, have already been conducted [126]. In general, the utilisation of

such kinds of interactive learning aids has found appraisal, but they still represent a very early

and still very limited means to computationally enhance medical training [127].

2.1.2 Interactive Dental Medicine

Investigation of means of interaction with medical simulations, especially with respect to phys-

ical model representations, is the focus of Chapter 4. The described application domain is

endodontic treatment: Therein, infected tissue in dental root canals is removed. The first few

steps of the procedure are as follows: (1) A cavity needs to be drilled into the tooth to gain

access to the root canal system. (2) Hand instruments are used to explore the root morphology.

(3) The access to the root canals is widened by means of a manually operated nickel-titanium



22 Chapter 2. Overview

file. (4) A rotary file is then used to extract the infected tissue. After rinsing and cleaning

the prepared root canals, they are filled, the access cavity is closed and the tooth’s surface

reinstated. Especially in the context of steps (2) to (4), the flexibility of the dental instruments

has a strong impact on the operation procedure, as it allows the dentist to feel and react to

impediments and frictions the instruments are exposed to. In order to approximate the phys-

ical behaviour of flexible files, we developed a deformable file model based on articulate body

physics.

Due to the focus on interaction and physics, the utilisation of self-organising system models

is only hinted at in Chapter 4: Models of self-organisation could drive the simulation of long-

term evolutions of treated teeth, especially considering the regrowth of bacterial biofilms that

repopulate the root canal system, if the operation was not completely successful, as is the

case for 15 to 32% of all endodontic interventions [128]. Another aspect of self-organising

system dynamics could address the simulation of recovery of a↵ected tissues. Di↵erent kinds

of physics, such as heat propagation and dissipation or the propagation of pressure through

crystalline dental materials, could complement according self-organising system models.

self-organising models aside, numerous approaches to virtual dental training have been pre-

sented. Products like DentSim (DenX Ltd.), video-capture the navigation of instruments by

the trainee through LED emitters [129]. Based on the sensory information, objective feed-

back about the treatment can be provided, thereby ensuring an e↵ective training procedure.

Voxel-Man Dental [130] is an exemplary project that combines three-dimensional visualisation

and force-feedback input devices. The focus of the interactions lies in the preparation of teeth

and treatment of tooth decay. Force-feedback devices transmit forces to the user, promoting

a multi-modal, natural, haptics-based communication between machine and user. Voxel-Man

Dental di↵ers from its competitors in its e↵ective visualisation routines, its integration into

the curricula of dental medicine programmes [130], and the capacity to perform even com-

plex operations such as the amputation of dental roots [131]. Similar systems, also backed

by comprehensive education studies, comprise PerioSim (University of Illinois) [132] or the

Virtual Reality Dental Training System (Harvard University) [133]. hapTEL (King’s College)

deserves special attention as it deploys a force-feedback device specifically designed for dental
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contexts [134]. The other systems are typically based on the Geomagic Touch force-feedback

device (formerly Phantom Omni) [135]. Di↵erent from its predecessors, the work presented in

Chapter 4 does not rely on force-feedback devices but solely builds on visual, so-called pseudo

haptics. Instead of training dexterity, it focusses on the complexity of endodontic treatment

and it harbours various opportunities for consideration of self-organising processes during the

simulation.

2.1.3 Developmental Biology

The Lindsay Virtual Human project (Chapter 3) and ventures towards interactive dental treat-

ments (Chapter 4) mainly target medical education. But their computer scientific methodology

also lends itself well for exploration in biomedical research and ascertainment of parameters

of according empirical models. This idea is fleshed out in Chapter 5 which introduces to the

field of developmental biological system modelling and simulation. Developmental biologists

devise and hone models to make predictions of organismal development at di↵erent stages of

the organismal life cycle [82]. To this end, they closely examine the properties of single cells,

their phases of development as well as their interplay. The developmental processes are self-or-

ganising in that there is no central control but the cells concert their interactions and phase

transitions based on locally perceived signals and internal states. Cell-produced signals, generi-

cally referred to as “ morphogens”, allow the cells to communicate with their local environment

and trigger and inform the rate of proliferation, cell migration, cell di↵erentiation, self-inflicted

cell death (apoptosis), the adhesive forces between cells and various other properties and inter-

actions. Due to the interplay of locally confined, neatly timed morphogen emissions, complex

morphological processes unfold to ensure the proper supply of the organism at each stage of its

development. Under potentially varying environmental conditions and considering interdepen-

dencies in the construction sequences, they make certain the required structural and functional

infrastructure of tissues and organs are achieved.

The consideration of required, multi-facetted model aspects renders model building and simula-

tion of developmental biology systems a considerable research challenge. These aspects include
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physical properties of molecules, fluids, cells and tissues as well as high-level biologically de-

scribed behaviours of cells and cell clusters. In the context of self-organisation, developmental

biology is of great interest due to the highly evolved interaction processes, the arising, observ-

able morphologies and the link between form and function. Although the goals of developmental

biologists di↵er greatly from those of medical students, the need for accessibility to and inter-

action with the systems’ models and simulations is similar—compare the vision of interactive

self-organisation in biological laboratories outlined in Section 1.2 and the research e↵orts of the

Lindsay Virtual Human project in Chapter 3.

Considering developmental biological models and simulations, the physical interdependencies

and interaction have recently earned enormous credit. In fact, numerous phenomena such as

the self-organised formation of supply networks in tissue or the growth and di↵erentiation of

plant stems can hardly be retraced in the absence of physical stresses [136, 137, 138]. According,

novel computational models of developmental processes incorporate both, biological behaviours

and physical properties/interactions. In [139], for instance, cells are modelled as temporarily

deformable spherical bodies. After division, daughter cells take up the space of their parent

cell and grow until they have reached their full sizes. The cells can establish finely tuned ad-

hesive forces among each other, which can break based on external stresses, and which serve

as a basis for forming tissue layers. Generally, it is important that biological developmental

models retrace the basic interactions listed in [83]. They include division, induction, adhesion,

apoptosis, migration, contraction and matrix modification (swelling, decomposition, or loss).

CellSys is another exemplary framework for modelling and simulating developmental processes.

It also provides components for visualisation and analysis. Again, each cell is represented as

a spherical, elastic body that can divide, grow, and migrate. Deformation, compression and

adhesion are implemented following the Johnson-Kendall-Roberts (JKR) model, which defines

the contact mechanics between elastic spheres. Explicit Euler integration drives the equations

for di↵usion across discrete grids and consumption of nutrients and growth factors. Cell param-

eters that CellSys supports include, for instance, their elasticity, diameter, the di↵usion rate of

morphogens, surface adhesion, initial orientation of cells.
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2.1.4 Architecture

The principles of self-organisation that drive simulations of developmental biology sometimes

also guide and inform the design processes of post-modern architectural works [140, 141]. An

according computer science course “ Biomimetic Computation” was developed and taught to

groups of graduate students at the University of Calgary. The course covered the basics of

devising and utilising self-organising algorithmic models for applications in art and design.

In an accompanying studio course, students from architecture applied their gained knowledge

and skills to challenging architectural projects. Chapter 6 presents the corresponding teach-

ing methodology tailored towards interdisciplinary students and shows selected student works.

Next to the algorithmic generation of various naturally occurring forms and structures [142],

the computer science course addressed the design of computational swarms, the individuals’

interactions including techniques of indirect communication through the environment. It also

introduced nature-inspired optimisation techniques such as evolutionary algorithms.

Comprehensive programming code examples were provided for the integrated development envi-

ronment Processing [143]. Processing has been developed with an emphasis on fast prototyping

of innovative algorithms and their interactive parameterisation. The recently released third ver-

sion of Processing expands on its previous fast prototyping functionality and provides graphical

user interface elements for changing arbitrary encoded parameters during realtime. Under the

supervision of lecturer and teaching assistant of the computer science course, the participating

student groups were able to sketch out functional prototypes very easily and to explore the

outcomes of their self-organising design systems by means of vast parameter studies. Investi-

gated concepts of self-organising generation of form include locally coordinated additive and

subtractive construction processes, whereas collisions, pheromone-like triggers, internal states

determine the agents’ interactions. In the studio course, the students transcribed their find-

ings for architectural design softwares such as Maya and Rhino 3D, which o↵er comprehensive

scripting interfaces. As the last step of the studio projects, the students crafted actual three-

dimensional models of their designs to investigate the e↵ects of the created forms and structures

under natural contexts, including lighting and considering scales.
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Utilising agent-based, self-organising system models for the conceptual design of buildings has

grown into an established methodology for complex architectural designs [144, 145, 146, 147].

It provides solutions to the local integration and adaptivity of designs, their functionality,

and the ever growing demand for flexibility. The research e↵orts have not come to a halt at

the mere virtual design, however. Instead, great strides have been made in the context of

swarm robotics and self-organised construction of building architecture. A termite-inspired

robot ensemble of three units, for instance, can solve simple instances of the inverse problem,

where the desired globally built three-dimensional artefact is defined by the user, divided into

small subtasks, and performed by the robots in a self-organising manner [148]. At the same

time, the empirical foundations are being honed. For instance, it has been found that certain

termites prefer working on recently deposited construction material rather than on clean soil

[149], presumably due to a certain cement pheromone excreted by the individual workers. The

importance of pheromones has just recently been stressed again, when it has been found out

that in certain ant species their local deposit conveys in rather clear instructions about the

growth and form of the resultant construction [150].

2.1.5 Art

Chapter 7 presents several fine arts projects which explore the “liveliness” of self-organising

systems. Similarly to the architectural projects in Chapter 6, the interaction dynamics of

ensembles and swarms of virtual agents lead to the generation of artificial three-dimensional

constructions. Three artists (JW, MW, SvM) first enquire into the arising virtual dynamics,

adjust parameters and perspectives in accordance with their interests. Importantly, the under-

lying interaction dynamics of the agents are captured in three-dimensional geometries as well

as in screenshots. These digital artefacts then serve as the inspirational basis of paintings and

sculptures.

One artist (SvM) achieves the adjustment and exploration of the simulated dynamics at the

same time by means of interactive evolution. Hereby, the artefacts constructed by a small set of

randomly initialised agent populations is displayed at first. Next, the artist rates the displayed
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phenotypes to increase the probability of the respective genotypes ’ propagation, recombination

and mutation in subsequent generations. The interactive evolution loop of simulation-display-

rating-evolution is repeated for as long as the artist wants. Both the artists SvM and MW

craft pieces that directly relate the virtual agents’ behaviours to the interactions of paint parti-

cles among each other and with external physical factors. JW complements these explorations

with works that bounds the vast variability of the emerging three-dimensional structures, thus

making it accessible to the observer in dynamic, interactive sculptural displays. The presented

pieces meld traditional media with novel, computer-generated contents in order to drive the

artistic discourse on interactive self-organisation. Other media such as arrangements of video

projectors in combination with camera-based motion tracking, generative software applications

or computer games have frequently served as alternative platforms contributing to the explo-

ration of interactive self-organisation from various angles.

Simulations of interactive self-organising systems have attracted attention from the arts over

many years; Therefore, it has been an important, re-occurring theme in the discourse between

science and art, most prominently documented by journals such as Digital Creativity (since

1997, Taylor and Francis) and LEONARDO (since 1968, MIT Press). Ever since their pro-

grammatic conception in the late 1980s [1], the reactivity of simulated flocks on user input has

served in numerous installations featuring motion-tracking and video projections [151, 152, 153].

Reynolds’ boids have even been considered an icon of artificial life art [154]. The application of

self-organising systems has not been limited to (computational) visual arts but also extended

into the fields of sound and music synthesis [155], and choreography [156, 157]. The frequency

and the intensity of self-organisation in the arts promises numerous continuing e↵orts in the

exploration of their interplay.

2.1.6 Ecological Exploration

In Chapter 8 the idea of interactive self-organisation in disguise of a computer game is applied to

the challenge of keeping an ecological balance in an aquarium. The user may populate a virtual

aquarium with snails, water plants and fish. Fish pollute the water with excrements, consume
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oxygen and release carbon dioxide. Snails clear the water from dirt but also use up oxygen.

Plants, in turn, emit oxygen and rely on carbon dioxide. They, too, contribute to the pollution

of the water in parts, due to regular loss of vegetation. Keeping these few interdependencies

in check without jeopardising the delicate equilibrium of the aquarium is the goal of the game,

while continuously expanding and renewing the aquarium’s setup.

The game relies on traditional two-dimensional graphical user interface elements to guide the

user and to provide him with clear options for interaction. The basin and the population of the

aquarium, its activities and the resultant water quality are at the centre of attention. Along

the perimeter of the view, gauges and little diagrams convey exact information to support

the merely visual impression of the system state. Input from the user is received only to

trigger strategic decisions considering the aquarium population’s composition and to inspect

the three-dimensional visualisation of the aquarium. Therefore, next to a standard, mouse-

based navigational interface, menus from button elements are provided to remove old and add

certain new inhabitants.

The serious game presented in Chapter 8 provides a single point of entry to influence the

dynamics of the studied self-organising system, namely by changing its constituents. As this

limited access to the system corresponds to the possibilities of interaction o↵ered by an actual

aquarium, it is not perceived as overtly confining. However, the interaction possibilities o↵ered

by countless realtime strategy games, including titles such as Dune, StarCraft, or Battle Zone

[158], allow the user to select, navigate, control, and manipulate individual (typically military)

units and subsets of the system alike. Here, too, the units would follow default behaviours

without the interference by the player. Yet, he may take control to support the self-organi-

sing system in reaching its goals. The one-to-many relationship between the player and large

numbers of units under his control is even more pronounced in games such as Pikmin and

Overlord [159], where the player navigates an avatar from 3rd person perspective, which can,

in turn, command his followers. Over the decades, games have introduced a great variety of

interfaces for dealing with large numbers of (semi-)autonomous units such as zooming in on

individuals, reading the status, reverting back to a global view, selecting units of specific kinds

or commandeering hand-picked subsets. For all of these interaction tasks, numerous solutions
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have been presented. Some of which worked rather well (such as selection in 2D views), whereas

others, such as the introspection of individual units in Carrier Command: Gaea Mission, may

seem bothersome. However, systematic research on these and other questions regarding the

usability und user experience for handling self-organising systems has just recently begun due

to the increasing availability and accessibility of robotic systems (see also Chapter 10). An

overview of the current state of the art in human-swarm interaction can be found in [160].

2.1.7 Network Systems

While the relationships among elements are fixed in the ecological exploration game of Chapter

8, the user is empowered with great degrees of freedom for configuring individual elements as

well as their connectivity in the serious gaming title on power grids presented in Chapter 9.

In detail, power plants (solar, wind, water, nuclear, coal) and consumers are located on a map

of Germany. They all represent nodes in a networked system, whereas the links between the

nodes can be established and changed by the user. The user is guided step-by-step through

the di↵erent interaction possibilities and descriptions of the visuals in a comprehensive tutorial

level. Next, he can either build and explore the complexities of power grids on his own agenda

or he may play through several pre-defined challenges, including, for instance, one level in which

a rough approximation of Germany’s power grid needs to be altered to be driven by a large

percentage of renewable power.

Drag and drop of power plants and consumer nodes, drag and drop to draw new power lines,

marking single and multiple network elements by means of rubber-band selection, and deletion

and configuration of individual network elements by means of simple two-dimensional buttons

and sliders roughly summarise the interaction tasks of the main interface of the title presented

in Chapter 9. In the integrated development environment of the game and simulation engine

Unity3D, which was used to develop the game, several additional user interfaces are o↵ered for

level design. In detail, these additional interfaces allow for regulating the interaction opportu-

nities in specific level scenarios associating permissions of interaction (full access, no deletion,

no access) with each interactive element and its attributes.
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Having realised the importance of infrastructure networks as the backbone of the engineered

society, several interactive simulations have been dedicated to this topic. First released in 1989,

the computer game Sim City has a long-time standing in the market [161]. Here, the player

learns to layout infrastructure networks while building flourishing cities. Less playful, with a

rather tight focus on economics, Power TAC tries to make informed predictions about viable

economic settings in a liberalised, decentralised electricity market [162]. With similar goals, the

serious game INFRASTRATEGO captured the decision-making strategies from more than three

thousand played games against human players that tried to optimise (a) policy making and (b)

price negotiations in an open energy market [163]. While these and other titles, directly draw

benefit from simulating the networked production and dissemination of power, their common

theme is rather universal: Diligently configuring nodes to make them serve the functionality

needed in a complex interwoven system, adding missing pieces and slimming down whenever

possible—these are the general challenges brought about by the network perspective, whether

applied to economics, life sciences or engineering.

2.1.8 Robotics

The work presented in Chapter 10 covers numerous aspects of interactive self-organisation.

The goal of the respective project, called OCbotics, is the design of adaptive, autonomous

self-organising robotic systems that provide the means for inspection, goal specification and

direct interference by their human users. Single and ensembles of quadrotor drones provide the

context of the given research. Next to the low-level reactive behaviour of single autonomous

drones that weave architectural structures under lab conditions, an elaborate modelling and

simulation strategy is outlined to minimise the reality gap, i.e. the ultimately experienced dif-

ference between simulated contents and reality. The computational models of drone ensembles

are exemplarily utilised for generating and optimising collaborative behaviours for mainte-

nance of building facades. In a way, this architectural application domain augments the virtual

experiments presented in Chapter 6 with capabilities to shape reality based on interactive

self-organisation on-the-fly.
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The aspect of on-the-fly interference with reality renders the need for responsive hardware

and appropriate user interfaces an important aspect of OCbotics. In particular, user inter-

facing is explicitly covered by one of several layers of an observer/controller architecture that

is frequently utilised in the field of Organic Computing. The lowest layer is the adaptable

system itself (the drone, in the given context). The next layer captures the classification of

the situation and, if needed, the adjustment of the system’s behaviour. At this second level, a

reinforcement component can be deployed as well in order to grow the confidence in individual

actions’ or behaviours’ execution. The third layer realises simulation and optimisation of the

system’s behaviours over a longer time-span (not realtime). Considering all these aspects of

adaptive behavioural logic, the remaining layers on top are tailored towards user interaction

and collaboration (with the user but also with other technical units).

The preliminary interfacing options shown in Chapter 10 include the navigation of a drone

ensemble using a head-mounted display and 3D input devices (Razor Hydras). The idea is

that in an augmented reality setting, the navigator would ease into the control of the ensemble

fastest, if the spatial relationships between the drone individuals and himself are naturally ex-

perienced, i.e. if the user does not have navigate through the view of an exterior, possibly also

mobile camera. Of course, this option still bears great importance as soon as the robots leave

the human controller behind. Nevertheless, the transition between the naturally perceived rela-

tionships and the leap into an exterior image source can be continuously animated, minimising

the potential loss of context, thereby also minimising the translational cognitive load for the

user.

OC systems interface with the user to receive initial and adjusted goals and to give the user

an opportunity to inspect the system’s current e↵orts and states. Next to specifying goals at a

rather high level of abstraction, the interplay of the user with the system, also considering its

decentralised, autonomous components, is best faced by means of Human-Swarm Interaction

(HSI) methodologies [164, 165]. Besides taking heart in the general user interface design guide-

lines, which all aim at minimising the cognitive load of the user [20, 21], an HSI interface should

support an e↵ective utilisation of the machines’ intelligences, promote local interference rather

than global ones, and be scalable [166]. Multi-user interaction with the swarm is also desirable,
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as is the interaction with subsets of swarm individuals. Ideally, an HSI interface should also

be applicable to a multitude of application scenarios and not only one very specific one. An

according exemplary interface was already presented in 2006 [96]. Here, robotic ground units

coordinate wirelessly, whereas one of them, the gateway robot, communicates with the user and

disseminates new instructions to the swarm. The user may also take direct control of individual

units of the swarm, thereby influence its dynamics indirectly [160].

2.1.9 Summary: Interactive self-organisation Taxonomy

The chapters of Part II of this thesis present several application domains for interactive self-or-

ganisation. Their contents include molecular signalling, physical interactions with crystalline

organic structures, interactions of organismal cells, the workings of physiological systems, e.g.

the human immune response, the interaction of individuals in ecological niches, and the view

on networked system components. The re-occurring theme of self-organisation is utilised in

di↵erent ways: To stage models of complex systems, to empower robotic units to collaborate, to

challenge and train players and students, to let artists explore complex regimes of interactions,

to confirm or question research hypotheses of biologists. The modes of access and the degrees

of interaction with the respective self-organising systems vary as well. Figure 2.2 provides

an overview of a self-organising system’s elements/aspects that one can interact with. The

user might directly change the overall system state, or the states of individual units of the

system. In the figure, this would correspond to moving an individual or all of them, as their

locations partially represent their state. The individuals’ (internal) attributes are depicted as

small purple boxes, if assigned specific values, they are filled with pink. The user might change

the number/type of attributes and set them to arbitrary values. Finally, the user might change

the interaction topology (depicted as green lines) among the individuals.

In accordance with the accessible aspects of an interactive self-organising system (Figure 2.2),

Tables 2.1 to 2.3 categorise the example projects shown throughout the chapters of Part II.

Each row references the respective chapter, names the implementation, and conveys information

about the accessible elements, the scope of granted manipulation regarding attribute-value pairs
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global 
state

local 
state

topology

attributes 
values

Figure 2.2: Aspects the user can interact with: The global state of the system, the local states
of the individuals of a self-organising system ( ant schemas), their attributes and values (small
boxes), the topology of interaction (green lines).

and interaction topology, and identifies the time frame of access. The multitude of examples

allows to establish a preliminary taxonomy; The accessible elements can range from globally

perceived scenes, slide sets or models via subsets of data objects, to individual data objects,

their attributes, including behavioural rules, the attributes’ values, and their states (denoting

those attribute-value pairs that a↵ect the elements’ relationships to other peers). Selection

and alteration of the accessed elements can be performed directly, indirectly by providing

selection queries or filters, or at yet another level of indirection, a meta-level so-to-speak, by

letting algorithms automatically decide on selection and alteration, as in the case when running

optimisation algorithms. The interaction topology may result from the individual elements’

states (and internal data values), as well as their behaviours. But it might also be directly

set by the user. The time of access can be a rather limiting factor, considering that in many

cases, it boils down to a singe period of access, namely before starting the actual simulation.

Yet, the means to access model elements during ongoing simulations represent an important

factor for modelling, refinement and interactive analysis of self-organising systems. That being
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said, to this date, each point of access granted to the user requires the conceptualisation and

implementation of a dedicated user interface. The next part of this thesis will shed some light

on according interfaces and provide an outlook at how interaction could seamlessly support

di↵erent times of access and at di↵erent levels of selection and detail.

2.2 Overview of Part III: Modelling Aspects

Part III of this habilitation thesis presents works revolving around interactive self-organising

modelling methodologies. As stressed in the introduction, this explicitly includes crafting mod-

els of interactive self-organising systems but also harnessing interactive self-organisation during

the modelling process itself. We cover a broad variety of aspects relevant to model building.

We introduce a general modelling methodology and we discuss generic computational repre-

sentations for arbitrary behavioural relationships in agent-based systems. We transcribe these

findings to devise a novel visual programming approach that amalgamates simulation space

and behavioural, programmatic logics, and we introduce a symbolic language to intuitively

programme locally interacting agents. At the backend, we flexibly organise the agent code by

cumulating components, and we organise experiments in databases providing high-level, visual

access. Figure 2.3 shows an overview of the chapters of Part III.

First, in Chapter 11, we present the complex systems modelling and simulation approach, a gen-

eral methodology apt for the development of interactive simulations and especially interactive

self-organising systems. It is founded on scientific methods, explicitly considers the empiricist

roots of model-building and simulation, emphasises the potential of emergent phenomena and

complex regimes in self-organising systems, and provides a constructive, agile workflow. The

key concept of self-organisation lies in modelling the interaction behaviours of the involved

units. An expressive, concise and easily readable representation is required in order to enable

non-programmers to flesh out intricate models. At the same time, the complementing execu-

tion algorithm, which is inherently married to the representational data structures in order to

provide consistent operational semantics, needs to perform e�ciently. On top of these basic re-
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CoSMoS11

Graph-based 
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SGGD14

Components15 EvoShelf16

Figure 2.3: The modelling aspects addressed by the Chapters (numbers) of Part III of this
thesis.

quirements, it is desirable to establish an axiomatic and thereby extensible vocabulary—again,

the representation has to support it. In Chapter 12, we present a rather versatile, graph-based

representation for modelling agent-based, self-organising systems. Due to its generality, its

performance has not reached the required level but, beyond the aforementioned goals, it allows

one to understand the system’s evolution as a result of locally executed behavioural interac-

tions. This idea of linking local interactions to the global system state is resumed in Chapter

13, where we present a visual programming/modelling approach for self-organising systems.

Previously, simulation space and programmatic editing spaces have been kept separate. The

new, interaction-oriented 3D modelling and simulation approach ( INTO3D) merges hierarchi-

cal graph-based visualisation methods with according, hierarchically and horizontally organised

algorithmic execution models. Each agent’s behaviour is wrapped in one behavioural module

represented as a spherical volume with input and output connectors to related it to its envi-

ronment. As these modules are recursively defined, one can dive ever deeper into the code of a

single agent to finally arrive at the atomic query and action operators that drive the simulation

by changing aspects of its state. Although INTO3D allows one to directly link between sim-

ulation objects and their behaviours, the 3D graph representation of interaction logics is not

as expressive as it could be. Instead of mere nodes and edges, graphical annotations should
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express their meaning to facilitate visual programming. This is an idea sought after in Chapter

14. In Figure 2.3, the heading of this chapter is labled with the acronym ‘SGGD’ which stands

for swarm grammars implementation for girls’ day. It presents an e↵ort to making program-

ming of swarming agents accessible to high-school students by literally letting them edit their

behaviour. On the one hand, one can define which kinds of perceived stimuli trigger an action,

on the other hand, the outcome of the action, such as the placement of a construction element

in space is specified by visually anticipating this result. More abstract factors such as chance

and timed activities are modelled referring to (configurable) symbols such as dice and timers,

respectively. Regarding the backend, the multitude of attributes and behaviours an agent can

be equipped with renders it the design of an according, flexible and extensible modelling frame-

work a challenge. To this end, we resorted to component-based modelling, which is explained

in detail in Chapter 15. Storing and recovering large numbers of experiments represents an es-

sential functionality in the context of modelling interactive self-organising systems. As straight

forward as the respective technology can be accessed nowadays, as challenging it is to provide

a user-friendly interface for the database backend. This is all the more important as any loss

or inaccessibly kept data may jeopardise time and e↵orts invested in models, simulations and

analysis. In Chapter 16, we provide an according, easy-access visual interface to managing

large amounts of model and simulation data.

Given this brief introductory overview of Part III, Figure 2.3 can be read as follows. The

CoSMoS approach, Chapter 11, is used to describe and guide the development life cycle of

interactive self-organising systems (depicted by the centred, cyclic arrows). Thus, it bridges

between the real world and the world of modelling. In order to appropriately capture the

intricacies of relationships in the real world, a graph-based representation is introduced in

Chapter 12 (see the left-hand depiction of a system and the relationships among its agents).

Graphical modelling of relationships is applied to a wholly computationally represented model

in Chapter 13, which allows for user interference at will (consider the system encircled with

green, and the locally drawn, green arrow instructing an ant’s activities). The all-visual and

interactive perspective of INTO3D can be further enriched by semantic visuals as shown in

Chapter 14. Regarding backend technologies, the individuals’ properties can be accessed and
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managed in an orderly and e�cient way utilising components, as introduced in Chapter 15.

This aspect is highlighted by the single enlarged ant to the right-hand side of the development

life-cycle in Figure 2.3. Finally, the great number of simulations one wants to work with can be

handled utilising visualised, integrated database management as presented in Chapter 16 (see

the numerous simulation models on the right hand-side of the figure). In the following sections,

we will provide a more detailed overview of the individual chapters of Part III of this thesis.

2.2.1 Complex System Modelling and Simulation

In Chapter 11 we elaborate on the adaptation of the complex system modelling and simulation

approach, or CoSMoS, to developing interactive simulations. Considering the contents of any

simulation, interactive self-organisation can be considered a subset of interactive simulation.

However, interactive self-organisation also specifically addresses the means of computational

representation, the processes of modelling, of simulation of self-organising systems, of making

them accessible, and analysing them. Despite their di↵erences, interactive simulation at large

and the field of interactive self-organisation share some goals and numerous challenges. For

instance, the need to integrate methods from several rather extensive fields of computer science

in order to setup fully functional prototypes. These fields include, for instance, realtime com-

puter graphics, visualisation, human-computer interaction, and realtime physics. In addition,

interactive simulations, just like interactive self-organisation, is usually either motivated by

retracing complex real world phenomena for training or research, or by anticipating complex

novel, engineered situations. Both paths require a systematic, scientific methodology towards

conceptualising and implementing model designs. The CoSMoS approach provides detailed

guidelines on how to unroll a project in this manner. Its three phases of discovery, develop-

ment and exploration step-by-step cover aspects such as data gathering about a newly exposed

research context, model building, translation to a computational representation, refinement of

the computational model as to avoid inclusion of unwanted biases, porting to specific com-

puting platforms and in-depth analysis of the results based on according result models. In

Chapter 11, the completion of several interactive simulations is detailed following the CoS-
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MoS approach, whereas a special emphasis is placed on the requirements of interactivity of the

resultant systems.

In analogy to the summary in Chapter 2.1.9, the interactivity of the systems presented in Chap-

ter 11 mostly accommodate continuous selection and manipulation of aspects of the systems.

There are several examples of interactive simulations that entertain models of self-organising

systems, for instance simulators about computer network routing, connected cars, beehive de-

fence and immersive experience of ant algorithms, accessible elements. In these simulations,

the accessible elements are the individual agents of the system, i.e. servers, cars, bees, and ants,

whereas sometimes direct access is granted, e.g. configuration of individual computing machines

in the routing simulation, and other times, only indirect access is provided, e.g. influencing ants

through manipulation of their physical environment. In all the instances, the behaviours of the

interacting units can be changed, e.g. by installing new routing protocols, by tasking bees with

goals of foraging or defence, by changing the cars’ routes, or by alterating the parameters of

perception and action of the ants. Interaction topologies play an equally important role. In

the routing and connected cars examples, the user establishes them explicitly. The user guides

the bees to broken honeycombs, to infiltrating enemies and to fertile flowers.

The CoSMoS process has been successfully applied to an array of modelling and simulation

projects [167]. Its importance to interactive self-organisation lies in its roots of science, its

awareness of complexity and self-organisation in system models, e.g. [168, 169]. From these

roots grow its attention to scientific detail but also its openness and agility of the development

cycle, which is another great asset in light of interactive self-organisation [170]. With the

dawn of integrated development environments for interactive simulations such as Unity3D,

Unreal Engine, CryEngine, or Stingray, the development of human-in-the-loop systems [67] has

received an enormous boost [171]. Next to the accessible integration of methods from di↵erent

computer scientific fields, great leaps local leaps, such as the introduction of a GPU-supported

particle-based physics engine [172] or the coming of age of virtual reality gear and computing

infrastructure [173] revolutionise the freedom one enjoys for modelling interactive simulations

and especially self-organising systems.
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2.2.2 Graph-Based Behavioural Modeling of Agents

Interactions of the involved individuals of a self-organising system represent the core of our

modelling endeavours as they determine the global system performance. Accordingly, Chapter

12 is dedicated to the question of how to represent local behaviours. Here, we integrate aspects

from formal grammars, graph-based representation and multi-agent simulation in order to arrive

at a computational representation that works across scales, and yet, o↵ers an accessible way to

tracking transitions from local interactions to global states. In particular, the behaviour of each

agent is expressed in rules that substitute local relational graphs, i.e. one situation description

is substituted by another. As these substitutions may not only change local states but also

introduce new individuals and remove previously existing ones, the according rules are rather

generic. The evolution of the system emerges when considering the consecutive substitution of

the local graphs across the whole simulation space—a time series of global networks unfolds.

The network perspective of interactive self-organisation, presented in a playful disguise in Chap-

ter 9, is a powerful tool for establishing and resolving interdependencies during the design of a

system and for analysis during its simulation and deployment. The expressiveness of networks

comes from the fact that relationships among entities are explicitly phrased and are persistently

exposed. As a consequence, one could say that graphs and networks provide a perspective that

renders a system structure transparent, both to the user and to analytical algorithms. By

providing an according means to model local interactions, the user clearly understands the

implications of the model behaviour and its meaning for the whole system. He can relate ar-

bitrary agents and their states and translate them into algorithmic instructions to drive the

simulation process. This empowerment of the user is essential for interactively designing and

altering models of self-organisation.

The idea of representing agents as nodes and edges as inter-agent relations, and of driving their

interactions through sub-graph substitutions has also been elucidated in the context of relational

growth grammars, or RGGs [174]. RGGs are an extension of parametric L-systems with object-

oriented, rule-based, procedural features that result in a universal modelling language, able to
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simulate standard L-systems, artificial chemistries and ecological systems alike. RGGs have

been shown to grow multi-scale models of plants integrating their structure and function [175]

and to grow architectural models [176]. The rationale to describe behavioural changes as local

graphs and to understand the global system evolution as a network time series is broadly

accepted, nowadays [177]. Initiatives such as those by Kniemeyer and Kurth and Belhaouari et

al. to make according graph grammatical formalisms accessible to the domains of architecture

and design [178, 179] need to be understood as forerunners of a ubiquitous future of graph-

based, network-oriented programming. They are the logical extension of rule-based models of

agent behaviours that are currently being established across domains as diverse as biomedical

research, economics and social sciences [180, 181, 182, 183].

2.2.3 SwarmScript INTO3D

In Chapter 13, we present a visual programming approach that integrates computational repre-

sentation of states and behavioural logic and the arising computational processes. In particular,

it introduces SwarmScript INTO3D, an approach to interactively model and simulate self-or-

ganising systems including technically designed systems such as robotic swarms or complex

biomedical systems. We have designed SwarmScript INTO3D to allow domain experts without

a background in computer science to translate seamlessly between the domain of their expertise

and corresponding computational models. Each model entity has to be properly represented,

groups of entities be organised into systems and systems of systems, and their interactions

concerted horizontally and vertically, across all scales. SwarmScript INTO3D addresses this

challenge of large heterogeneous model domains by means of an interaction-based representa-

tion and simulation algorithm. It provides a networked, hierarchical view of interdependencies

and interactions for model and process analysis. It takes the graph-based notion of local mod-

els as presented in Chapter 12 and applies it to large system simulations, projecting it right

into the simulation space and making it fully interactive for the user. SwarmScript INTO3D

can be presented and understood at di↵erent levels: (1) At the formal, representational level,

(2) at the algorithmic level, i.e. the execution model, (3) at the level of user interaction, i.e.
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the description and analysis of physiological models, and (4) at the level of model abstraction.

Chapter 13 introduces the approach from the user’s perspective and sheds light on the execu-

tion model and potential abstractions in the context of an interactive self-organisation model

of the human immune response.

SwarmScript INTO3D represents the first comprehensive attempt on merging model design and

simulation exploration. It does away with the conceptual distinction between design-time and

runtime, it nullifies the need to provide specific interfaces for di↵erent steps of an interactive

self-organising system’s life cycle. Rather, it allows the user to fully access agents, behaviours

and states at any level of abstraction at any point in time. It further relates local individual

behaviours (Chapter 12) and the global system’s evolution as well as the behavioural logic,

or functionality, to the according system units’ visualisations and geometries, or their form.

As a result, SwarmScript INTO3D can be seen as a pioneering e↵ort towards unification and

simplification of modelling and simulation perspectives.

The agent-based modelling paradigm has received a lot of attention also from the field of

computer graphics and the entertainment industry. Maya and Blender, for instance, are 3D

modelling environments in which 3D meshes can be crafted and equipped with physical prop-

erties as well as individual behaviours to produce physically realistic and behaviourally moti-

vated animations [184, 185]. Blender, for instance, o↵ers a visual Logic Editor that allows to

model agents and their behaviours. Although such applications provide means to introduce

behaviours, they focus on rendering, and the behavioural mechanisms mostly facilitate the pro-

duction of animations or generative, parametric 3D structures. Modelling interactive agents

that can change their environment and be subject to change move into the focus of attention of

frameworks targeting the design and development of games and interactive simulations [186].

Visual programming interfaces are sometimes part of the respective IDEs, as the Blueprint

interface for algorithmic modelling working with Unreal Engine [187]or can be added as plug-

ins, as for instance the Antares VIZIO Visual Logic Editor for the game engine Unity3D [188].

In addition to basic arithmetics, and working with abstract data structures, these frameworks

provide high-level access to high-level physics calculations and computer graphics functions in-

cluding 3D asset management and scene graph organisation. Most recently, news have spread
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about a virtual reality mode for the Unreal Engine editor [189]. For now, it mainly promises

fast 3D scene composition and editing, focusing on basic transformations of 3D objects. How-

ever, combined with the trend towards deployment of virtual reality for 3D asset modelling

[190, 191, 192], one can infer that the degree of freedom of model creation and manipulation in

virtual three-dimensional spaces will continue to grow.

2.2.4 Visual Agent Programming

The previously described chapters span modelling from a conceptional, methodological per-

spective (Chapter 11), systematic and accessible modelling of individual behaviours (Chapter

12) and the systemic, holistic and integrated view on interactive self-organisation (Chapter 13).

Although the latter approach o↵ers drag and drop interaction for building and changing indi-

vidual behaviours and inter-individual relationships, there is yet another layer of accessibility

that can be o↵ered to the modeller/user. This additional layer tailored towards accessibility

is introduced by Chapter 14. Here, we present an interactive self-organisation system that

empowers high-school students to programme individual agents, to configure them alongside

their simulation environment, and to explore their collaborative construction e↵orts in 3D vir-

tual space. The agents implement functionality to reproduce, to di↵erentiate, and to leave

geometrical shapes in space. These activities can be triggered either by peers or certain objects

perceived in the environment, by chance, or by timers. The user can model such triggers of per-

ception by simply dragging and dropping the required objects into the agent’s projected field of

view. The triggered actions can be modelled by dragging and placing the respective agents and

objects outside of the acting agent’s field of view. Standard graphical user interfaces are o↵ered

to adjust any additional parameters, such as the agent’s field of view, its flight parameters, its

colour or type. Our preliminary trials in the context of an event to promote STEM research

among high-school girls shows that the presented approach to visual agent programming is a

valuable extension to interactive self-organisation techniques.

Spatial relationships are the underpinning of numerous interdependencies between self-organi-

sing agents. Making these accessible alongside the agents’ spatial arrangement seems natural.
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However, conditions and actions that cannot be spatially expressed need to be considered as

well. Therefore, Chapters 12, 13 and 14 suggest to utilise general relationships and let spatial

relationships carry meaning whenever naturally understandable. In this way, our spatially

trained cognitive abilities can quickly decipher and encode spatially motivated behaviours. In

order to provide a similarly quick and clear access to other relationships, the work in Chapter 14

suggests to introduce symbolic visuals whose presence conveys their referred factors’ influence

in a given situation.

Accessibly programming of agents has received a lot of attention over the years, as program-

ming agents provides a rather direct way of conveying the basic principles of algorithmics [193].

NetLogo is an according, widely spread framework designed to provide easy access to agent-

based systems [194]. It deploys a simple but expressive scripting language for describing the

agents’ properties and behaviours. Visual interfaces for agent-based programming are o↵ered

by softwares like StarLogo TNG [195, 71] and SeSAm [196, 197]. StarLogo TNG simplifies pro-

gramming by wrapping code statements into graphical puzzle pieces—only code snippets that

fit together are syntactically allowed. SeSAm, on the other hand, facilitates the composition of

multi-agent systems by translating flow charts of the agents’ behaviours into optimised program

code. Inspired by the first visual programming interfaces for defining LEGO robot behaviours

[198, 199], a more generic framework, AgentSheets, was conceived [111]. Here, objects are

considered agents whose behaviours are expressed through sets of behavioural rules composed

of basic operators (conditions such as see or stacked as well as actions such as transport or

set). For configuring operators, AgentSheets o↵ers drop-down menus to choose from available

parameters and agent types. Hereby, it makes extensive use of icons that depict spatial re-

lationships and graphical states of the simulation: For instance, an o↵set dot in a rectangle

depicts an agent’s relative position and arrows in eight directions from that dot refer to its adja-

cent neighbours. The concepts of AgentSheets have grown into a new framework, AgentCubes,

which o↵ers students to build complex agent scenes in three-dimensional space [200, 201]. Al-

though AgentSheets can be considered a forerunner in bridging logics and simulation visuals,

its creators have yet to introduce modelling relationships directly into the simulation space.
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2.2.5 Agent Components

Next to the behavioural logic, an agent typically consists of several other components. These

can, for instance, include its visual representation or its physical properties. In Chapter 15

we present a component-based computational framework that allows the utilisation of various

formal representations, computation engines and visualisation technologies side by side within

a single simulation context. In particular, hierarchies of components can combine attributes

and behaviours on di↵erent levels of scale and resolution. They can host information for

various visualisation techniques e.g., charts and animations, for a range of interaction interfaces,

associated with hardware devices or software user-interfaces, or for simulations computed in

realtime and driven by heterogeneous computational engines. We apply this framework to

design agents composed of graphics, physics and behavioural components which in turn are

registered with respective component engines that drive the evolution of the simulation system’s

state. We showcase the open-ended potential of the component-based approach by introducing

a light-weight client/server component, which spreads its siblings in the system’s component

hierarchy over a network infrastructure. As a result, we can organise, generate, compute and

present simulation contents, for instance for medical education, in flexible ways.

In the light of interactive self-organisation, a powerful way to maintain and extend agent ca-

pabilities is a strong asset. The breadth of computational methods necessary to establish an

interactive self-organisation system, see Chapter 11, demands for the deployment of according

software engineering methods, of which, building agents by means of component aggregation

is an important one. The benefits lie in the ease of modelling and also the ease of integrating,

maintaining, porting and continued development of individual engines.

Component-based frameworks enable human collaborations by disseminating groupware com-

ponents [202]. Similarly, they can be harnessed to break down and distribute, and reutilise large

code bases. One can, for instance, divide the computational work in complex human-computer

interfaces into several components for graphical user interface display, for tracking user input

and for processing and transforming the input [203]. Interactive simulations and computer
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games, whenever multiple processing channels need to work alongside each other, with well-

defined interfaces for cross-transfer of few pieces of data, a component-based approach to or-

ganising information and algorithms can be beneficial [204, 205]. Component-based approaches

a↵ord especially well the concurrent deployment of essentially di↵erent calculation engines or

engines that need to consider and integrate events at rather distinct time-scales. For this rea-

son, they were, for instance, deployed in the context of an integrative modelling and simulation

e↵ort towards various Earth-surface processes [206]. In addition, di↵erent from object-oriented

programming, the aggregation of components can happen at the front end, not necessarily in

code [207, 5]. The flexibility of component-based coding infrastructures is especially suited

for networking tasks [208]. Their distributed instalment and exchange of components in data

networks can improve the availability and the quality of services [209, 210].

2.2.6 Interfacing with the Modelling & Simulation Backend

Typically, simulations are either parameterised through configuration files or through command

line arguments and started from a textual terminal. Scripts can be authored that systematically

explore certain parameter spaces, configure and start the corresponding simulation experiments

and store them in a semantically structured folder hierarchy. Scripts would again take on the

mass interpretation of the experiment results by composing tables and plotting graphs. These

visual results can serve as a basis for selective manual analysis by the experimenter, later. In

Chapter 16, the last chapter of Part III, we approach the challenge of managing large sets

of models and simulation experiments in another way. As before, we bring together several

obliquely connected steps in the modelling and simulation processing pipeline, namely scripted

data generation, data storage and retrieval and visual data analytics. We accomplish this by

providing one integrated simulation and exploration interface, called EvoShelf, that provides

the user with the functionalities to run scripts to populate a database of models/experiments,

to automatically capture screenshots or visualise the experiment results in other ways, e.g. by

means of star plots, and to organise and display the staged experiments in an e�cient graphical

user interfaces.
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Interactive self-organisation implies that the user can choose from a large repertoire of choices.

Accordingly, the multitude of experiments grows fast. Yet, without a systematic way of or-

ganising one’s models and experiments, the benefit of interactivity may quickly fade. For this

reason, EvoShelf provides an integrated, visual platform that facilitates every aspect of develop-

ing, running and analysing simulation experiments. In Chapters 12 to 13, access to individual

rules of agents, the rules’ constituents, and the arising networks was provided. EvoShelf grants

a (visual) handle on whole simulations and sets thereof. Accordingly, it fills a last, important

gap to address all major aspects of modelling interactive self-organisation.

Despite the plurality of aspects considered by the solution presented in Chapter 16, the most

challenging associated research directions are the scalability of database technologies and meth-

ods of visual analytics [211]. Their combined consideration is frequently referred to by the

buzzword big data, the idea to gather, process and make accessible large volumes of various

kinds of data at great velocity and without loss of veracity [212]. As elaborated in [213], ac-

cording networked solutions rely on fast ethernet connectivity between the database nodes (up

to 56 Gigabyte/second in both directions). Although these rates of throughput approximate

the ones of local main memory banks, network communication still does not scale well. Phys-

ical limitations, for instance introduced by switches, aggravate the situation and prevent the

maintenance of steady transfer rates with growing numbers of networked nodes. Data storage,

too, is subjected to considerable restrictions. Yet, massively parallel, column-based relational

in-memory databases can, in parts, ensure fast analyses of large amounts of data (100TB with

clusters of about 100 nodes). In addition, strategies of data partitioning and distribution can

drastically accelerate access [214] but the probability of unfavourable data distributions grows

with the number of partitions [215, 216]. One idea to embark on this challenge is to partition

and place data depending on demand [217, 218]. The same idea needs to be applied when

considering the user who needs to quickly sift through the (preprocessed) data in order to un-

derstand complex situations or identify anomalies [219]—here, too, data needs to be prioritised

or filtered based on its importance [220]. In order to further interactivity of visual inspection

[221, 222], an environment like EvoShelf could be integrated into the hierarchical system visu-

alisation approach presented in Chapter 13, thereby making it seamlessly possible to provide
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overviews, emphasise important simulations, configurations or behaviours, zoom and filter and

provide details on demand [223].

2.2.7 Summary: Modelling, Simulation, Modulation

The chapters of Part III of this work cover several aspects of model-building for and by means

of interactive self-organisation. A general methodology for modelling and simulation of com-

plex systems (CoSMoS) is presented in light of interactive simulations. Among the unveiled

examples, the contents of several interactive simulations qualify as interactive self-organising

systems. They serve as exemplary studies to step through the CoSMoS approach. This ap-

proach not only considers a scientifically sound, agile development cycle that supports the

design of self-organising systems, but the multitude of aspects from di↵erent disciplines of

computer science addressed also ensures that it is applied to the development of a rich inter-

active self-organising system. From this overview perspective of modelling and simulation, we

leap right into modelling formalisms for individual agents’ behaviours. The conveyed view on

locally defined relationships to drive system-wide processes provides an accessible, transpar-

ent foundation to modelling interactive self-organisation. The relational, networked view of

self-organising systems is taken one step further by projecting programmatic relationships into

(three-dimensional) simulation spaces. In order to improve accessibility, still, the means to pro-

gramme individual agents’ behaviours based on spatial relations and symbolically configurable

conditions is introduced. Besides local behaviours, other factors may drive the simulation, e.g.

physical interdependencies. Also, di↵erent modes of access may be deployed as well as various

visualisation techniques, or approaches to distributed computation. We show how these sem-

inal extensions of interactive self-organisation can be realised following the component design

pattern. The last chapter of Part III wraps up the major modelling aspects of interactive self-

organisation providing a solution to integrated design, storage and retrieval and management

of large numbers of simulation experiments.

To conclude, Part III draws the path from reality to virtuality in great detail. It also introduces

several means to combine previously separated steps in the workflow pipeline of model building,
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simulation, analysis and the management of simulation experiments. Altogether, the achieved

great level of interactivity of model configurations, at arbitrary level of detail and at arbitrary

points in time, even during the simulation process, establishes a new notion of modelling and

simulation capacity. In order to give credit to this newly achieved quality of user immersion into

the modelling and simulation process, we suggest the utilisation of the term modulation which

is etymologically close to modelling (from Latin “modulus”, the diminutive form of “modus”:

measure) but stresses the ongoing process of adaptation and, thereby, may refine the notion

of simulation (from Latin “simulare”: imitate). Rather, as the interactive self-organisation

methodology presented in this thesis does not distinguish between the phases of modelling and

simulation any longer, but o↵ers an all-encompassing way to model, stimulate, analyse and

manage at arbitrary points in time, modulation can be considered the main activity of the

user. Hence, the process of modulation begins by laying out and testing the corner stones of

a model. It continues when filling it with details, when analysing it from di↵erent points of

view, when evaluating and refining it. Even when the user interacts with it in an application

context, he modulates the model, as he continues to adapt it in accordance to his ideas.

2.3 Overview of Part IV: Optimisation

In the fourth part of this habilitation document, several aspects around optimisation of (interac-

tive) self-organising systems are introduced. Figure 2.4 gives an overview of the most important

aspects that we consider. On the left-hand side of the figure, the number of simulated agents is

scaled from the bottom to the top. The blue arrows in the figure indicate optimisation flows,

i.e. the flow of optimisation that informs or facilitates to calculate other parts of the simulation

or modulation. As displayed, we realised scaling agent numbers by looking at and optimising

smaller sets of agents and applying the gained knowledge to larger sets. In particular, we

accomplish scalability by detecting patterns among certain sets of agents that allow for their

subsumption by single meta agents. Thereby, we can reduce the number of calculated agent

interdependencies and activities and introduce greater numbers of agents while maintaining low

computational costs. At the centre of Figure 2.4, an ant nest construction is seen. Again from
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the bottom to the top, increasingly bigger fragments of the construction are shown, starting

with a pair of joining corridors. Next, the corridors are attached to a chamber that may, for

instance, be used for food storage. From the network of hallways and chambers that arises,

the silhouette of an ant hill becomes visible, which is shown in full size and from the outside

at the top. The individual steps in the figure emphasise the emergence of greater construc-

tions based on local construction activities and the resultant, locally built artefacts (although

the shown steps do not coincide with the actual spatiotemporal succession). The depiction of

artefacts is merely motivated by the goal of illustrating the sequential steps in a multi-scale

simulation. However, these artefacts result from interaction processes and, hence, their under-

lying behaviours and properties are the target of any optimisation e↵orts. The construction

elements drawn in golden colour represent artefacts that emerge during the simulation. Their

grey reflections, which are slightly shifted to the upper-left, represent the non-computational

domain model captured of a real ant nest construction. Optimisation flows inform the simu-

lated model about the observed processes and artefacts at di↵erent levels of scale—considering

local construction of individuals at ever greater spatiotemporal scales and considering di↵erent

qualities of the resultant artefacts (corridors, chambers, networks, nest). As the results from

the simulated, computational representation may provide the basis for honing and completing

the domain model, the respective optimisation flow arrows that bridge between the two models

at di↵erent scales point in both directions. In addition, vertical bidirectional arrows connect

the individual scales of the simulated artefact construction. These optimisation flows indicate

the need to (1) ensure reaching higher-level artefacts that closely correspond with the observed

domain model based on lower-level interactions/artefacts, and to (2) incorporate behaviours

and properties at higher levels that emerge from lower levels of the simulation. Lastly, to the

right-hand side of Figure 2.4, we see a schematic display of the development of an architectural

building design. Here, the idea is that global goals are defined by the user/designer and the

properties and behaviours of the self-organising system are optimised step-by-step to satisfy

these goals. Independent of the goal, i.e. retracing empirical models or generating novel pro-

cesses/artefacts to reach global goals, we refer to the step-wise optimisation and information

of emergent processes as guided emergence.
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Scale Emergence

Figure 2.4: Optimisation e↵orts introduced in the chapters of Part IV of this thesis. From
left to right: Scaling numbers of simulated agents, correlating domain models and simulation
scales, and top-down guidance of emergent artefacts/processes. The blue arrows represent
optimisation flows that inform or facilitate the calculation of other parts of the simulation.

Part IV is divided into four chapters. In the first one, in Chapter 17, we mainly elaborate

on approaches towards guided emergence. More specifically, we shed light on top-down model

optimisation for (a) self-organised flight across pre-defined two-dimensional surfaces, (b) swarm

flocking in three dimensions that approximates a pre-defined progression of flock densities, (c)

the guidance of the self-organising construction of three-dimensional artefacts based on pre-

defined shapes, and (d) the approximation of a di↵erential equation model of predator-prey

systems by an agent-based, self-organised model. Chapter 17 concludes with an outlook on

scaling simulation processes through dynamic model adaptation, which is introduced in detail

in Chapters 18 and 19. In the first, we focus on speeding up a compartmentalised genera-

tional model of the Mitogen-activated protein kinase pathway, that plays an important role

for cells receiving and reacting to external stimuli. Here, we identify correlations among the

compartments, or agents, and approximate the behaviours of interdependent clusters using ar-

tificial neural networks and genetic programming. The learned models allow us to introduce

simplified rule sets to drive the calculations. In the latter chapter, Chapter 19, we focus on the

idea of immersing model-adapting agents into a simulation. These agents would automatically

observe interacting agents from the domain model and subsume them by meta agents when-

ever possible. To this end, we stress the formalisation of the involved agents, considering their

behavioural rules (Chapter 12) and their other properties (Chapter 15) such as their physical
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shapes. Next, we introduce an algorithmic loop for logging, learning & abstraction and valida-

tion to build and, if necessary, revoke hierarchies of abstracting meta agents. We demonstrate

the feasibility of the chosen approach in the context of a spatial, three-dimensional, biophysical

simulation of blood coagulation in the human body. In the last chapter of Part IV, Chapter

20, we draw the big picture of automated abstraction in self-organising systems. We elaborate

more in-depth about the opportunities provided by the concept of self-organised middle-out

abstraction, i.e. the concept to build, maintain and revoke abstraction hierarchies to always

consider the required level of detail of a self-organising simulation. We clarify the relationship

between abstraction hierarchies for performance optimisation and abstraction hierarchies to

pinpoint and express emergent processes and structures. And we conclude the chapter with an

outlook on the application potential of this approach, not only considering simulation e�ciency

and the integration of large, multi-scale models, but also to fill gaps in empirically ascertained

models, to guide empirical research studies and to bring the concept to good use by introduc-

ing the underlying algorithms to according smart hardware networks. In the following sections,

we provide more details about the individual chapters. We emphasise their contributions to

interactive self-organisation, and we touch upon respective related works.

2.3.1 Targets of Optimisation

In Chapter 17, we focus on approaches to guide emergence in self-organising systems. We

present four according approaches and conclude with concepts regarding the optimisation of

the simulation process itself. In the first approach, we evolve boids, i.e. spatially interacting

agents that organise their flight patterns based on local neighbourhood perception, to flock in

the predefined areas. The boid agents move about in a bounded, two-dimensional simulation

space. The user can place tiles beneath the agents to guide their behaviour—the performance

of the flock results from the accumulated time of individual boids on top of a tile. In one

experiment, after placing tiles in a pattern resembling the holes of a pool billiard table, a flock

evolves that breaks up into several clusters to reach the corners of the simulation space. In

another experiment, wherein a broad strip of tiles is laid out asynchronously to one the left of
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the simulation space, one flock with great performance values is bred whose spatial dimensions

resemble those of the tile strip. Another specimen achieves even greater performance by splitting

and then re-joining in order to gather as many flock members at the respective spatial position

to optimally traverse the tiled area. Di↵erent from two-dimensional experiments that focus

on the flocking behaviour itself, the next set of simulation experiments targets the parametric

optimisation of swarm agents to construct three-dimensional artefacts. To this end, we again

use evolutionary algorithms to breed swarms guided by geometrical constraints. This time, the

fitness of a swarm is determined by the ratio of building blocks built inside and outside of a

predefined three-dimensional structure composed of a set of cubes (a natural extension of the

tiles in two-dimensional space). We deploy di↵erently shaped pre-defined guiding structures

to push the swarm building upwards or to constructing stair-like, bent structures. We also

entrain a constructive swarm incrementally, first breeding a swarm that builds upwards and

introducing a bent extension to the guiding structure to instigate optimisation runs staged on

the previous ones. Next, we consider the approximation of goals that change over time. To

start with, we optimise the boid parameters in such a way that the resultant flock’s density

over time coincides with a step function and a sine function. Here, the fitness of the bred

swarms is inverse to the deviation from the goal integrated over time. Similarly, as a test

bed for learning the behavioural parameters of heterogeneous swarms, we choose a classic

predator-prey model, in which the populations of prey and predator individuals depend on one

another. Sets of simple di↵erential equations describe the dynamics of the according system

[224, 225]. We retraced these dynamics, that spring from empiric observations, by means of

an agent-based, self-organising model, where predator and prey agents wander about a two-

dimensional plane. Prey reproduces, dies on contact with a predator, or dies of other causes. A

successful hunt prompts the reproduction of predators, that only die of natural causes. Again,

deviation from the predefined functions determined the fitness values of a system configuration.

Beside the application scenario and the generation of population target values, the only other

di↵erence to the preceding approach lies in the use of particle swarm optimisation [226] instead

of evolutionary algorithms.

Di↵erent from the methods introduced in Part III, that mainly aimed at bottom-up design,
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refinement and modulation, Chapter 17 mainly addresses the challenge of high-level goal defi-

nition for self-organising systems. In case of the two-dimensional tiling model, a concrete user

interface is provided to specify a desirable target. In the other cases, i.e. the three-dimensional

guiding structures, the preset mathematical functions, and the di↵erential equation system of

the predator-prey model, user interfaces can only be conceptually inferred from the respective

target representations. In addition to these representations, which impose multi-dimensional

static or dynamic constraints—one could also speak of corridors of boundaries within which the

systems are tailored to work, the contents of this chapter are mainly geared towards population-

based configurational optimisation. The link to interactive self-organisation is two-fold. On the

one hand, as shown in the tiles example, an interactive application may actually o↵er interfaces

for the optimisation of self-organising systems, possibly even at realtime speeds. On the other

hand, the manual introduction of high-level goals is also always a defining element in interactive

self-organising systems, as it determines the agents’ autonomous behaviours.

Setting and achieving the emergence of high-level goals of self-organising systems has been

proposed for various application domains. For instance, by following a hierarchically concerted

divide and conquer strategy to reliably and economically meet the production goals in large

heterogeneous energy grids [227]. A survey on software engineering methods specifically for pro-

gramming self-organising systems can be found in [228]. The domain of spatially coordinated

self-organisation, more specifically of self-organised construction has been having a fundamental

impact on the field of swarm intelligence and self-organisation at large [229, 230]. Until today,

self-organising construction is a prospering field of research, see, e.g. [148, 231, 232]. It has

been broadly acknowledged that guiding self-organisation is an important concept to mastering

complex systems. An overview of guided self-organisation (GOS) can be gained by reading

[233]. This scientific field notably utilises formal methods of information theory, graph theory

and nonlinear, complex systems to characterise and influence self-organising systems [234]. In

particular, GSO is generally expected to yield an increase in organisational structure or func-

tionality without providing explicit instructions. Recent research successes are, for instance,

the formulation of a novel measure to quantify sensitivity gains of parameters dependent on

state transitions [235]. Another measure, referred to as empowerment, captures the degrees of
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freedom of an agent to prepare itself for di↵erent eventualities [236]. It includes both the means

of control over the environment and the awareness of this control. Consequently, empowerment

can be understood as a measure to describe the impact of an agent on a system, and, as such,

also as foundational information to guide a self-organising process. One more way to finding

out about local influences lies in studying the flow of information in self-organising systems.

It allows us to identify and quantify causal e↵ects based on probabilistic inference, as seen,

for instance, in the example of the sensorimotor loop of mobile agents [237]. A more direct

attempt at governing complex, self-organising systems is found in generating functionals [238].

It builds on the insight that one may only want to provide fuzzy goals rather than a concisely

specified target state of a system and on ways of optimising according probability functions. A

compromise between bottom-up and top-down specification is realised by interactive evolution-

ary computation methods, that are, for instance, used to manually breed swarm chemistries,

where di↵erently configured, proactively moving particles bond with and repel each other [239].

Interactive evolutionary computation translates the user’s subjective preferences into fitness

values that guide the heuristic search of evolutionary algorithms [240].

2.3.2 Abstraction of Interaction Processes

After presenting several means to optimise self-organising systems to better reach predefined

goals or approximate empirically observed phenomena, Chapter 18 is the first one fully dedi-

cated to the concept of automated model abstraction and simplification at runtime. The main

goals are to speed up the simulation by simplification and to enrich the model and the re-

sults by abstraction. As especially non-scalability [241, 242, 243, 244] holds back agent-based

simulations of self-organising systems from finding wide-spread use in scientific research and

application-oriented development, we aim at dynamically abstracting agent behaviours at run-

time and to thereby reducing the computational e↵ort. Patterns of interactions and patterns of

states that are discovered among model agents during runtime allow to recursively rephrase and

simplify the agents’ definitions and behaviours. The concrete model that serves to exemplify

our methods is the Mitogen-activated protein kinase, or MAPK, pathway. It is a signalling
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pathway that describes how information travels from the receptors of a cell to an inside target

by means of enzymatic biochemical reaction cascades [245]. It plays a key role in the cell cycle

and triggers responses to extracellular stimuli and regulates cellular activities, such as gene

expression, mitosis, and di↵erentiation [246]. There are two viable established models of the

MAPK signalling pathway. One assumes that a stimulating enzyme triggers the production

of the information carrying enzyme inside a cell [7]. The other one deploys a negative feed-

back loop to cause a sustained oscillations in the information-carrying enzyme production [8].

Both models are represented as sets of di↵erential equations. For our model, we consider each

substrate a loosely defined, independent agent. We cluster and abstract the function of gene

expression by identifying correlations of the respective rates. For learning e↵ective clusters, we

utilise the back-propagation algorithm on feed-forward artificial neural networks (ANNs) [9] as

well as genetic programming [247]. Our results show the e↵ectiveness of automated hierarchical,

observer-driven abstraction.

From the perspective of interactive self-organisation, the presented automated abstraction at

runtime promises the accomplishment of two important goals. Interactive systems need to be

responsive to the extent that the user can immediately recognise the impact of his interfer-

ence. In agent-based systems, however, especially if the agents have the ability to reproduce,

the computing hardware becomes a bottleneck as soon as too many variables and interdepen-

dencies are considered. At this point in time, the computation is staled, the system becomes

unresponsive, and usability and user experience fall apart. One can introduce drastic limita-

tions such as a maximal limit of agents in the simulation but this might heavily impact the

simulation dynamics. Automatic model abstraction at runtime presents an alternative. In the

long run, it might enable the system to calculate all interdependencies across multiple scales

without loss of speed or accuracy and yet allow the user to direct the computational e↵orts

to wherever his interests lie. The user-directed focus could impose a more detailed level of

simulation and visualisation [248], as if investing the details of interaction on an ant hill by

means of a magnifying glass. In addition, automated model abstraction during runtime o↵ers

a way to make higher-level phenomena accessible to the user by identifying and abstracting

the links between local interactions and higher-level emergent phenomena. Especially in large,
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bottom-up systems this task will become increasingly important in order to render them use-

ful. Otherwise, one might be overwhelmed by the sheer dimensions and numbers of interacting

units. Lastly, automated model abstraction during runtime also aligns well with the goals of

the previous chapter, Chapter 17. In order to understand and evaluate the reached state in an

interactive self-organising system, it is seminal to describe this state at a higher level.

Clustering is the starting point for our approach to creating meta-agents that represent groups of

domain agents, thereby reducing the computational load of the model. Especially derivatives of

the online divisive-agglomerative clustering approach, or ODAC, are suitable for this task [249].

They adjust cluster a�liations incrementally and dynamically over time. Those agents could

be considered part of a cluster whose members frequently interact with each other or whose

states and actions correlate mathematically. In the long run, the latter could be determined

relying on dependency measures such as mutual information [250, 251]. This would be one way

to neutralise the bias towards spatial relationships of our automated abstraction approach and

to extend it towards arbitrary domains. As an alternative to re-organising our models based

on explicit measurements of emergence, artificial neural networks can take on this task. They

have been shown to e↵ectively extract features relevant for retracing diverse sets of models, e.g.

[252, 253, 254], and they can build and process data in a hierarchical fashion. Auto-associator

networks (AAs) represent a special type of artificial neural network that trains a weight matrix

to reconstruct the input [255]. As such, they can be utilised for re-building incomplete data or

to filter noisy data. Since the mid 2000s, the significance of AAs has surged as the so-called

contrastive divergence algorithm was applied to train several layers of hidden nodes in AAs

one after the other [256, 257]. These multi-layered AAs, or stacked auto-associators (SAAs),

yielded unprecedented performances. Especially SAAs and deep belief networks (DBN), that

learn probabilistic estimates in a hierarchical fashion, have been driving the popularity of deep

learning approaches [258].
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2.3.3 Immersive Abstraction Agents

Chapter 19 extends the preceding chapter by proposing another type of abstraction that aims

to build adaptive hierarchies of spatial agents during the course of the simulations. In order to

provide a rather flexible means to automated model abstraction at runtime, we follow the idea

to devise observer agents that are immersed into a simulation. The observer agents monitor

groups of domain agents. Among those observed agents, cluster of agents may be identified

based on interaction patterns or state correlations. These clusters are the basis for the creation

of a meta-agent that subsumes the domain agents. As before, these meta-agents might not

persist, if the conditions for their formation is not warranted any longer. Hence, the observer

needs to break down a↵ected meta-agents into their constituent individual agents. In order to

determine the persisted validity of a meta-agent, we regularly inspect it. If it can be maintained

over a long enough time, it itself can get subsumed by even higher-level meta-agents. In order

to substantiate our approach and to provide a basis for its rigorous analysis, we build it on a

formal definition that also considers the agents’ component-based architecture that, a.o. defines

its biological and physical properties and behaviours (see also Chapter 15). Great emphasis is

placed on the timing analysis used to attest the benefit of the abstraction mechanism in improv-

ing the runtime of a simulation. Here, we focus on the engine performing biological behaviour

as it represents the major bottleneck in our system (graphics and physics are greatly optimised

by default). In particular, we consider all behavioural components registered with this engine

and reveal that the computational complexity of the simulation mainly results from the number

of agents and the number of interaction rules of each agent. In order to reduce the number of

domain agents, the immersed observer agents continuously perform the aforementioned triple

of logging, learning & abstracting, and validating. In case cluster identification and observation

trigger an abstraction, the newly created meta-agent’s behaviour component aggregates all the

unique rules of the subsumed agents. The subsumed physics components are merged into a

higher-level physics composite structure and the transformation of the higher-level agent is cal-

culated as the average of all the subsumed agents. During the validation phase, the predicted

activity of the subsumed agents is compared to their actual interactions as they are temporarily
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fully reinstated. If prediction and actual performance diverge, the abstraction is revoked and

the domain agents released again. Otherwise, the confidence in the prediction is increased,

which leads to a reduced frequency of proactive validation phases. In our empirical studies

we show that our approach increases the performance of a three-dimensional biophysical blood

coagulation simulation by 20%. This result considers the computational overhead caused by

our approach and the achievement of the same simulation accuracy as without the abstraction

mechanisms in place.

The extensions and innovations of Chapter 19 bring about new opportunities for interactive self-

organisation. Primarily, of course, the approach’s versatility stands out: By merely introducing

observer/abstraction agents into an arbitrary simulation (which o↵ers an according software

interface), we can achieve optimisation during runtime. Even more, once the agents are trained

for a particular simulation environment, they may be recycled and deployed in additional exper-

iments even before a simulation begins. In this case, the agents can pre-optimise the simulation

without loosing their ability to adjust themselves and the simulated domain model to new de-

velopments and requirements during runtime. Next to versatility, the agent-based approach to

automated model abstraction at runtime facilitates a transparent, potentially self-explaining

presentation of ongoing abstractions. In analogy to the outlined analysis of computational com-

plexity introduced by domain agents, the immersed abstraction agents can exhibit, each for its

own or in ensembles, the computational resources they occupy. The agent representation of the

optimisation process also gives the user not only the opportunity for its fine-grained inspection

but also to exercise control over it. The user can, proactively, configure the abstraction agents,

e.g. exclude their e↵orts from certain aspects of a simulation, modify abstraction hierarchies,

increase or decrease locally a↵orded accuracy values, direct abstraction agents towards hot

spots in the simulation that consume overly much computational power. The user may even

trigger the proliferation of abstraction agents in order to ensure coverage and saturation of the

simulation space. With respect to the semantic abstraction hierarchies that might be built, the

agent-based approach provides a wrapper for correlating states and interactions in a system

and their higher-level meanings. Chapters 12 and especially 13 provide according interactive

self-organisation techniques modulation of models, optimisation and abstraction.
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Merging numerous agents into single meta-agents can simply be achieved by adding an extra

variable that denotes how many domain agents it represents [259]. One can find domain agents

that can be merged by conducting a principal component analysis of linear combinations of

the their attributes [260]. The resultant clusters are further subdivided to reduce intra-cluster

variation and then subsumed. Instead of considering a fixed, permanent relationship between

meta-agents and domain agents, so-called compression manager agents may direct the formation

of meta-agents and manage their integration into the model. Subsumed domain agents may also

be released again, if their monitored behaviours exhibit too great variance from their assignee.

Mere aggregation of agents renders the model more compact, possibly simplifying it due to

omission of detail. However, if the subsumed agents’ interplay resulted in emergent properties

or behaviours, like hypercycles in chemical reactions, the new representation can be considered

a helpful bottom-up abstraction labelling a new structural and functional entity [261]. In

artificial chemistry simulations, the emergence of increasing complexity levels can be traced

[10, 262]. Relying on rich functional descriptions of genes and molecular assemblies, according

hierarchical representations have also been used to analyse and improve the metal-leaching

e�ciency of certain bacterial colonies [263]. In case no multi-level semantics can be provided

upfront but high-level properties emerge from subsystem interactions during a simulation, they

need to be detected algorithmically [264]. The need for automatic detection of emergence

has given rise to emergence measures considering (discrete) di↵erences in entropy regarding

attribute values of a system [265] or their divergence [266]. In the latter case, similarity measures

for probability distributions, such as the Hellinger distance, have been used to calculate the

divergence over a given period of time. As this calculation is rather expensive, it has been

proposed to approximate one distribution by means of a Gaussian Mixture Model and make

estimates fitting individual sample points of the other distribution [267].

2.3.4 Self-Organised Middle-Out Abstraction

In Chapter 20, originally published as a chapter of the book The Computer After Me [121], rep-

resents our most comprehensive view on the subject of optimisation, emergence, and abstraction
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to date. It re-iterates our work preceding works in this field, starting with the early concept

of self-organised middle-out abstraction (SOMO) from 2011 [268], which basically fleshes out

all the general ideas presented and evaluated in Chapters 18 and 19. As a consequence, these

results are briefly summarised again. The chapter motivates our approach, i.e. self-organising

middle-out abstraction, with the need for integrating large, multi-scale system representations

[87, 269], for abstraction to maintain computability, and for capturing emergence [270]. There-

fore, we elaborate on the concept’s application to simulation systems that exhibit emergent

processes and structures, as for instance shown in the domain of artificial chemistry. Here,

it was shown before that molecules form recursively that exhibit vastly di↵erent behaviours

and properties than their constituents. In this context, we detail the technical foundations

of SOMO, including deliberations about the deployed data structures to represent agents and

their interactions, about learning patterns working with concrete data sets, about creating and

adjusting abstraction hierarchies down to the operational level, about the calculation of confi-

dence measures for proven abstractions, and even about the execution loop of the algorithm.

We also draw the analogy between agent hierarchies and horizontal interactions among the

nodes of these hierarchies to the graph-based visual modulation approach presented in Chapter

13. On top of the concepts presented in Chapters 18 and 19, we further the notion of a self-or-

ganising abstraction approach by detailing means of propagation of abstractions among SOMO

agents, for instance by gossiping as well as their goal-driven proliferation and optimisation, e.g.

relying on evolutionary algorithms. Finally, we deliberate about projecting SOMO technology

onto distributed real-world computing systems such as smart sensor networks and how it could

quickly build hierarchical empirically investigated models of arbitrary real-world situations in

a self-organising manner.

The contributions of Chapter 20 to interactive self-organisation are mainly of conceptual nature.

However, these concepts are quite powerful. In particular, these include the advancement of

SOMO to fully self-organise to comprehensively cover and abstract vast simulation spaces. The

evolutionary processes that drive its self-organisation may well be the foundation for versatile

collections of SOMO agent configurations apt for specific simulation and modulation needs.

Furthermore, Chapter 20 explicitly bridges the gaps between building abstraction hierarchies
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and simulated emergence as well as between the distributed abstraction process and its ap-

plication to networked hardware. More specifically, SOMO could operate on top of arbitrary

self-organising technical systems such as smart sensory networks, whereas the nodes are aug-

mented with e↵ectors to make self-directed inquiry possible, nourish each others’ e↵orts of data

accumulation, abstraction and fusion [271, 272]. Based on the gathered data, the nodes would

build abstraction hierarchies not only to better grasp higher-level concepts in their environ-

ment but also to understand the important relationships between the structures and processes

around them. Eventually, such SOMO-driven hardware networks could be used for scouting

and intelligence gathering, for self-organised surveillance and anomaly detection. If a user in-

troduced local, meso, or global goals, the SOMO-built abstraction hierarchies would become

the backbone of evaluating and honing system and environment.

SOMO harnesses hierarchical organisation of agents to reflect abstraction and to introduce

model simplifications. Organising multi-agent systems in hierarchical fashions is rather broadly

established and may, for instance, reflect prioritisation or a hierarchy in command [273, 274].

While SOMO builds up hierarchies to backup a model, or rather a simulation, as it mainly con-

siders patterns in the flow of data, the resultant use of the hierarchical data structure should

better be considered holonic [275]. Holons describe not only the hierarchical, recursive struc-

tures that frequently occur in nature, featuring stable subsystems at di↵erent levels of scale,

but they also consider their horizontal interconnection. In SOMO and SwarmScript INTO3D

(Chapter 13), these interconnections are the relationships, their interactions and their resultant

state changes that drive a simulation. Holons represent a powerful concept that can be har-

nessed for engineering complex systems, e.g. by introducing sets of holons that play di↵erent

roles for adaptive production control [276]. Yet, unsupervised learning in order to pervade

system processes typically happens in hierarchical ways. Artificial chemistries are a prominent

domain for learning hierarchies [277, 261]. The formation of high-level molecular micelle struc-

tures from polymers from monomers is one of the early examples to show hierarchical emergence

based on simple forces of attraction and separation among particles [10]. It has been suggested

that automatically detecting emergent phenomena poses a greater challenge [264]. Similar

to the SOMO concept, other systems have been proposed to identify and subsume emergent
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phenomena in multi-agent systems [278, 279]. Once identified, the SOMO concept envisions

the local utilisation of an abstraction but also its dissemination to other abstraction agents.

Gossiping is an exemplary, robust method to realise the required communication paths in a

networked multi-agent system [280, 281].
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Chapter 3

LINDSAY Virtual Human: Multi-scale,

Agent-based, and Interactive

We are developing LINDSAY Virtual Human, a 3-dimensional, interactive computer model of

male and female anatomy and physiology. LINDSAY is designed to be used for medical edu-

cation. One key characteristic of LINDSAY is the integration of computational models across

a range of spatial and temporal scales. We simulate physiological processes in an integrative

fashion: from the body level to the level of organs, tissues, cells, and sub-cellular structures.

For use in the classroom, we have built LINDSAY Presenter, a 3D slide-based visualization and

exploration environment that presents di↵erent scenarios within the simulated human body. We

are developing LINDSAY Composer to create complex scenes for demonstration, exploration

and investigation of physiological scenarios. At LINDSAY Composer ’s core is a graphical pro-

gramming environment, which facilitates the composition of complex, interactive educational

modules around the human body.

Christian Jacob, Sebastian von Mammen, Timothy Davison, Abbas Sarraf-Shirazi,

Vladimir Sarpe, Afshin Esmaeili, David Phillips, Iman Yazdanbod, Scott Novakowski,

Scott Steil, Carey Gingras, Heather Jamniczky, Benetikt Hallgŕımsson, and Bruce

Wright: Lindsay virtual human: Multi-scale, agent-based, and interactive. In: Advances

in Intelligent Modelling and Simulation: Artificial Intelligence-based Models and

Techniques in Scalable Computing, vol. 422, pp. 327–349, Springer Verlag, 2012.
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3.1 Motivation

Health care systems all over the world are struggling to provide a↵ordable and comprehensive

care. Consequently, the need for excellent education and training of medical sta↵ and doctors is

more important than ever. At the same time, emerging digital technologies render it possible to

present complex contents faster and better to a wide range of audiences. Within this educational

context, we are developing LINDSAY Virtual Human, a project at the intersection of Computer

Science, Education, and Medicine. LINDSAY provides a collection of computational tools for

research, presentation and learning in the context of human anatomy and physiology. LINDSAY

also serves as a testbed for interactive computer graphics, touch-based user interfaces, multi-

scale modelling, and scalable computing solutions to run simulations seamlessly on a diverse

range of computing platforms: from web-based systems and desktop computers to laptops and

mobile devices.

3.1.1 Starting with Virtual Anatomy

As a starting point for this project, we attended and analyzed lectures on human anatomy

given by senior instructors from the Faculty of Medicine at the University of Calgary. One of

our conclusions was that a virtual 3-dimensional human body in combination with the ability

to easily navigate and label the displayed contents could greatly facilitate and improve the

learning experience for students. Consequently, such an application for interactive 3D content

presentation became the first milestone of our LINDSAY project.

3.1.2 Bringing Virtual Physiology to Life

LINDSAY Presenter supports the visualization and exploration of static contents on human

anatomical structures. Integrating human physiological processes into an anatomy model is

challenging. Highly dynamic processes—resulting from a densely connected network of inter-

acting components—have to be illustrated over time and within 3-dimensional spaces. We did

not want to resort to mere animations of such contents [282], as this would not allow for a

wide range of interactive exploration of the underlying networked units and their interactions.
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Furthermore, we want users of LINDSAY to be able to navigate to any part of the virtual

human body and, even more importantly, be able to quickly zoom to physiological processes at

(almost) any scale. More precisely, a user should be able to experience human anatomy on the

whole-body level, on the level of organs, tissues, and cells, down to sub-cellular components.

This requires an integration of mathematical and computational models of the various processes

across multiple scales in space and time. LINDSAY Composer is our first prototype of such a

multi-scale programming, composition, and visualization toolset. It allows us to explore and

present physiological processes within a virtual 3D female and male anatomy model.

3.2 Related Work

Before we expand on our approach to building a virtual human, we give a brief overview of vir-

tual anatomy, the use of anatomy atlas databases, and the use of component-based frameworks

for building dynamic software environments.

3.2.1 Replicating Human Anatomy and Physiology

For more than two decades, scientists have been exploring ways to enhance medical research

and education through computer-based renderings of human anatomy and physiology. The

American National Library of Medicine started as early as 1989 with the composition of a

comprehensive imagery database of human physiology, also referred to as the Visible Human

[283]. Since then, these data sets have inspired a large number of virtual anatomy projects for

research, patient consultation and education [284].

3.2.2 Virtual Human Anatomy and Physiology

In the context of education, atlases have been composed that promote the exploration of detailed

anatomical terminology in a proper visual context [285]. Some systems have been further

extended to incorporate data about actual biomedical processes in the human body, for instance

processes of gene control [286]. One of the projects at the forefront of modeling physiology

by integrating processes across scales is the Physiome project [287], which takes signalling
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and metabolic pathways into account to connect protein models with cell simulations. The

objective is to build tissues and organs through this bottom-up approach. Such systems can be

modelled and simulated by means of traditional mathematical methodologies or as large sets of

self-organizing bio-agents, or swarm systems [288, 289, 290]. The latter, agent-based approach

forms the foundation for our computational models to implement physiological processes across

multiple scales.

3.2.3 Components as Dynamic Building Blocks

In addition to multi-scale modelling, we rely on a component-based architecture for a frame-

work to generate and deliver anatomical and physiological contents. The required diversity

of data types and computational processes for an integrative simulation and presentation tool

can be addressed by a component-based software architecture [291]. More specifically, a com-

ponent can be broadly defined as a unit of independent deployment, which has a persistent

state [292]. The design of component-based software architectures has advantages in regard to

various application domains. Frameworks for (human) collaborative work can be implemented

by brokering groupware components [202]. The coordinated execution of heterogeneous com-

ponents works for organizing human collaboration as well as complex code bases that comprise

large sets of interoperable, reusable software components. For example, a component-based

augmented reality framework could manage elements and modules for user interfaces, tracking

or object modelling [203].

Computer games face a similar challenge of integrating vast numbers of software compo-

nents, whether related to contents, providing networking infrastructure or user interfaces [204].

Component-based frameworks have been investigated and applied in the context of Massively

Multiplayer Online games [205]. For practical reasons, multi-facetted game units are defined

by aggregating distinct software components rather than by using established methodologies of

object-oriented inheritance [207, 5].

An overview of component-based client/server frameworks is provided in [208]. Sets of component-

based distributed embedded systems facilitate coordinated interactions [293]. Redeployment

of components across a network infrastructure results in improvements regarding service avail-

ability [209]. Alternatively, mobile devices can exchange software components in peer-to-peer
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networks in order to address user requests [210]. The exchange of software components in

heterogenous hardware infrastructures might require adaptation of the control over the re-

spective components or of their data. In [294], such an adaptation strategy is presented for

transferring components among devices of varying degrees of computational power, e.g., from

a desktop/server to a set of mobile devices. In particular, adaptation is realized by specific

drivers that serve as middleware to translate the broadcast software components.

3.3 The LINDSAY Virtual Human

We started developing LINDSAY Virtual Human in May 2009 as a collaboration between

the Department of Computer Science in the Faculty of Science and the Undergraduate Med-

ical Education program in the Faculty of Medicine. The LINDSAY project currently has a

demonstration room that replicates a medium size class room (20-30 students) with a large

rear-projection screen. With LINDSAY we create, use and test (1) stereoscopic display tech-

nologies, (2) software for 3D content sharing across the internet, (3) motion capture technologies

to develop seamless gesture-based user interfaces, and (4) wireless remote controls and touch

interfaces based on iPhones, iPod touch devices and iPads. Figure 3.1 provides a snapshot

of the di↵erent components of the LINDSAY project that its development team is currently

working on.

3.4 LINDSAY Presenter

A typical scenario for an anatomy lecture for 1st year students works usually like this: The

anatomy instructor is standing in front of a class of a few hundred students, elaborating on

the human skeleton, muscle, and nervous systems. The instructor is using a plastic model to

explain the various muscles of the hand, draws with a pen on rubber gloves to illustrate tissue

connectivity, or uses projected images on a screen in front of the class in the form of a slide

presentation. This is not an ideal situation for the following reasons:

• Only very few students can actually follow the instructor’s explanation, as they sit close

enough to see which anatomical structures are being pointed out. Most of the students
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LINDSAY

displays

interfaces

graphics

simulation
networking

remote content delivery

distributed computing
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laser pointers
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volumetric data
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GUIs

agent-based models

membrane computing

developmental models

discrete and continuous models

Figure 3.1: As a truly interdisciplinary project, the LINDSAY system requires the integration of
ideas, techniques and solutions from a wide range of fields within the disciplines of information
and communication technologies.
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Figure 3.2: The LINDSAY Presenter interface with its two main windows: (a) The top window
displays the hierarchical list of the male and female anatomy atlas. (b) Below is the main display
window, in which the currently selected anatomical structures are visualized.
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in the classroom are relegated to what they see on the projected slides, which they might

(in many situations they don’t!) have also on their laptop screens in front of them.

• The location of anatomical structures within the human body is best understood by

getting a true feeling of their arrangements in 3D space. That is, it helps to be able to

rotate the body, dissect to reveal hidden structures, and reassemble to get a true sense of

each structure’s exact position.

• The interrelationships between anatomical structures—such as organs, connective tissues,

muscles, cardiovascular or lymphatic networks—is best revealed by, again, studying their

points of connection and their distribution across the body.

Obviously, these aspects are hard to illustrate to students without being able to convey the true

dimensionality, spatial arrangement and connectivity of anatomical structures. Furthermore,

complex structures of the human body and their interrelationships reveal their functions much

more easily by seeing them in action and in coordination with other components. Our LINDSAY

Virtual Human tries to address exactly those issues.

3.4.1 Anatomy Atlas

The backbone of LINDSAY is an anatomical database, derived from a male and female anatomy

model acquired from Zygote, Media Group, Inc. [295]. The model consists of a set of 3D sur-

face files, organized in folders according to anatomical categories (vascular system, circulatory

system, muscles, etc).

However, each file has labels which are often abbreviated and sometimes have no reference

to anatomical categories of parts. Using anatomical atlases, we properly labelled and further

categorized the parts, storing the data in an XML file. We converted the model to the COL-

LADA format, which we use as our data interchange format [296]. This facilitates the storage

and transfer of not only static model data, but also rigging and information relevant to anima-

tion. We import and store the model data in our own binary format, along with the XML file

containing the proper labelling and hierarchical organization of anatomical parts.

A snapshot of the user interface to the database is depicted in Figure 3.2. The atlas contains

female and male anatomy, which is accessible via a hierarchical list. The selections through
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this interface determine which anatomical structures are displayed in the visualization window.

Both single and multiple selections are possible, so that, for example, the cardiovascular system

(heart and blood vessels) can be displayed in combination with the lymphatic network of the

immune system.

The database is also searchable. Search terms can be entered in the field on the top of the

left column of the atlas interface. Below this search field, the entries that match the query

are displayed. From this result list, further selections can be made to add to the components

displayed in the visualization window. The centre column serves as a common-item placeholder.

Items from the atlas or search can be dragged in this middle table in order to keep only those

components that are needed in a neat and arranged list.

Each entry in the atlas can be annotated with a label in the visualization window. This is

illustrated in Figure 3.2, where many of the displayed inner organs are identified by their

labels. The labels are arranged in the 3D space around the virtual human. Whenever the

model is rotated, the positioning of the labels is adjusted to help with their readablity. As the

labels are printed on a transparent background, it is usually easy to read most of them at the

same time; if necessary, a small rotation of the anatomical structure would quickly reveal any

hidden labels. This greatly improves legibility of the labels and gaining an intuitive sense of

which label is associated with which anatomical parts. Organizing the labels and identifying

the corresponding parts is also facilitated by di↵erent colours, which can be set through the

colour chooser window.

3.4.2 Interactivity

The 3D anatomy model can be rotated, moved, as well as scaled—so that structures from the

whole body level to the organismal, cellular, and sub-cellular level can be inspected. These

changes of perspective can be controlled using keyboard commands in combination with a

normal 2D mouse and its control buttons. In addition, we have created a remote control

application which runs on iPod touches, iPhones, and on a Pen-Smart pad.

We have also designed prototypical implementations of a gesture-based control interface, where

gestures are identified on a video stream from a camera and then translated into naviga-

tional commands within the virtual human. Although they were generally well received by
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Figure 3.3: Example slide set created with LINDSAY Presenter.
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the anatomy instructors, they could not (easily) allow for a high degree of interaction, compris-

ing numerous commands. We have conducted experiments with laser pointers that we can use

as drawing devices on the projection screen. Here, again, a video camera behind the screen is

identifying the position of the laser beam on the screen, translating these into the proper coor-

dinates within the main display window. In the meantime, we have replaced the laser pointer

by an iPod touch and iPad, where the drawing is now performed on the touch surface. Fig-

ure 3.4(a) shows the navigation screen of our remote control application on an iPhone. Moving

a single finger across the touch interface relocates the virtual human in its x-y-plane. Moving

two fingers apart or close to each other will increase or decrease the zoom level, respectively.

Rotating the iPhone/iPod around its central and lateral axis will make the virtual human turn

accordingly. A vertical two-finger swipe moves a customizable cutting surface in and out of the

virtual body, which allows one, for example, to see through the ribs, skin and muscles into the

inside of the heart. This combination of touch gestures and rotation makes the iPhone/iPod

an intuitive remote control device for instructors, who should not need to use the keyboard or

mouse for navigation of and around the virtual human.

The iPhone/iPod application can also be switched to atlas mode, where a replica of the hi-

erarchical anatomy ontology is available through the touch interface. Figure 3.4(b) illustrates

how this touch interface works. As the iPhone/iPod screen is rather small, it is not practical

to display the hierarchical anatomy list all at once. Rather, we opted to show only a single

hierarchical level per screen. Selections of anatomical structures are made by double-clicking.

Any selections made through the iPhone/iPod interface are immediately replicated on the atlas

interface in the main application (Fig. 3.2).

Both through the main LINDSAY Presenter and its wireless touch devices, the user can draw

simple shapes and lines to enhance or highlight the 3D model currently on display. Custom

labels can also be added, which can optionally be connected to specific anatomical structures.

These labels are in addition to the already built-in annotations, which display the names of the

anatomical structures in the atlas.
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(a) (b) (c)

Figure 3.4: The LINDSAY Presenter remote control applications running on iPhone and iPod
touch devices: (a) The navigation interface allows the virtual body to be moved, scaled, and
rotated. Di↵erent styles of cuts can ‘open’ the body. (b) The interface for the atlas gives access
to all anatomical structures. (c) Three categories of anatomical parts are selected (indicated
by the pink background), which are instantly displayed in the main window.

3.4.3 Creating 3D Slides

As LINDSAY Presenter is meant to be used as a presentation tool of human anatomy, we

have included an easy mechanism to build sequences of 3D slides. This is similar to the way

standard slide presentation software, such as Powerpoint© or Keynote© work; after having

created a set of slides, one can progress from slide to slide to enhance an oral presentation.

In LINDSAY Presenter slides are actually scene descriptions of the 3-dimensional contents;

therefore, we refer to these scenes as “3D slides”. At any point a snapshot of the current 3D

scene can be taken by selecting the CAPTURE button at the bottom right corner of the main

display window (Fig. 3.5). This then adds a thumbnail in the 3D slide column to the right of the

display window. Flipping between 3D slides creates a smooth, animated transition between the

associated scenes. A set of such 3D slides can be saved (Save) and later loaded (Open) into the

LINDSAY Presenter for subsequent presentation, where the 3D slides can be used as guidance.

Figure 3.6 gives examples of such a sequence of 3D slides, here illustrating the anatomy of the

female hip. It is worth mentioning, that each 3D slide is, of course, completely interactive, as

the “slides” are not simple screen captures of the current 3D contents, but contain the actual

scene graph of the current display.
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Figure 3.5: 3D Slides in LINDSAY Presenter : Demonstration of a typical setup for a lecture,
here, as an example, on muscle anatomy. See Figure 3.6 for close-ups of selected 3D slides.

3.4.4 Volumetric Data Integration

We acquired image slice data (Fig. 3.7(a)) of the human body from the Visible Human Project

[297]. Using the OpenGL Shading Language, we can render a cut plane of the head from any

orientation (Fig. 3.7(b)). Combining the shape of the head with a cut plane, an arbitrary cross-

sectional view from any position or orientation can be achieved as demonstrated on the iPhone

(Fig. 3.7(c)). We also render using multiple layers to visualize all the slices simultaneously to

achieve a volumetric visualization; for this we use the shader again to allow for an arbitrary

viewing orientation(3.7(d)). With the application of transparency and colour filters, inner

structures can be revealed or isolated (Fig. 3.7(e), (f)).

The Zygote model [295] is stylized and representational, designed to be illustrative of the major

structures and well suited for educational purposes. For example, arteries are coloured solid

red and veins are coloured solid blue. The Visible Human slice data on the other hand is from

photographs taken of actual slices of a cadaver, and often individual organs aren’t as readily

discernible and surface boundaries not always obvious.

Rendering the data sets together allows for further exploratory abilities. Figures 3.7(d-h) show
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Examples of 3D Slides in LINDSAY Presenter : A typical sequence of 3D scenes
that would mark keypoints of navigation through the LINDSAY anatomy. Smooth, animated
transitions are generated to blend between slides: (a) Female muscle skeleton, (b) female hip,
(c) pelvis, (d) connective tissue of pelvis, (e) pelvis muscles, (f) hip joint with muscles.
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the slice data superimposed over the 3D model data. Thus, direct comparisons can be made

between the representational visualization and the realistic and physically accurate volumetric

datasets. In Figures 3.7(g) and 3.7(h) the cut plane reveals the inner structures of the 3D

model, while the slice data remains simultaneously overlaid.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Integration of volumetric data from the Visible Human with surface model data.
(a-c) Renderings of the volumetric data from the Visible Human data set within LINDSAY Pre-
senter ; (e-h) the anatomical model data is superimposed on the volumetric data set. (d) The
renderings work on both desktop and mobile devices.

3.5 LINDSAY Composer

One of the key objectives for LINDSAY is to support the creation of computational models in

real-time and combine this with 3-dimensional, highly interactive visualizations of physiologi-

cal processes related to the human body. LINDSAY Composer is a primarily graphics-based

programming environment, through which complex biological processes can be compiled using

simple drag-and-drop interfaces. Available “ building blocks” for such compositions are, for

example, fluid fields, cameras, anatomical objects, protein shapes, or cell types. A time line

helps to trigger and keep track of events within the simulation, which then allows one to run

and replay simulations as needed (compare Fig. 3.12).

Similar to first-person 3D computer games, the LINDSAY Composer creates an environment



82 Chapter 3. LINDSAY Virtual Human: Multi-scale, Agent-based, and Interactive

that immerses the user into a virtual 3-dimensional world, with the context of anatomical

structures and processes. Di↵erent from prerecorded contents, the underlying computational

engines, in combination with the dynamic scene composition, allow for interactive explorations

that are guided by the user’s intuition and curiosity. Software engineering methodologies,

hardware advancements and agent-based models turn simulations into a highly interactive

multimedia experience.

3.5.1 The Computational Framework

LINDSAY is being built as a fully functional, 3-dimensional model of male and female anatomy

and physiology. Our objective is to use the virtual human to illustrate, for example, which

muscles are involved when we run or when we hold a pen. Similarly, we can illustrate and

investigate the functional structures and defense processes involved in the human immune

system. The immune system, in particular, encompasses complex processes across a wide range

of scales: from the organismal level (e.g., the thymus) to the networked lymphatic system

(including lymph nodes) down to the cellular (B-, T- cells) and the sub-cellular levels (gene

regulation in response to pathogens). Consequently, LINDSAY ’s modeling framework aims

to integrate mathematical and computational models across scales. For example, we use fluid

dynamics to simulate blood flow at the whole body level. Using interactive zooming, we can

get inside a blood vessel, dive into a capillary or hop onto a blood cell to carry us through

the blood stream. At this level we switch to agent-based simulations, where “ bio-agents” (i.e.,

cells, proteins and other molecular structures) are being tracked within the simulated 3D virtual

body space. Physics engines, mainly used for computer games, have been adjusted to provide

realistic and yet quickly computable scenarios that replicate physiological processes within the

human body.

As part of the LINDSAY Virtual Human project, we have developed a component-based com-

putational framework that allows the utilization of various formal representations, computation

engines and visualization technologies within a single simulation context. For our agent-based

simulations, the graphics, physics and behaviours of our interacting entities are implemented

through a set of component engines. We have developed a light-weight client/server component,

which spreads its siblings in the system’s component hierarchy over a wireless or wired network

infrastructure.
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3.5.2 Agent-based Modelling

Agent-based models play an increasingly dominant role for the modeling of biological and social

systems [298, 299, 300]. We see the most promising potential in agent models that incorporate

swarm intelligence techniques [229, 230], as these result in more accurate and realistic models.

The use of agents as independent and interacting entities is particularly crucial when spatial

aspects play a key role in defining patterns of interaction, in understanding their emergent

properties, and in helping to shed light on the inner workings of physiological processes.

All biological systems, such as the human body, are inherently driven by interaction processes

in a 3-dimensional world. Therefore, in order to capture physiological processes within our

LINDSAY Virtual Human, we utilize swarm-based, 3-D simulations which exhibit a high degree

of self-organization, triggered by relatively simple interactions of a large number of ‘ bio-agents’

of di↵erent types.

The LINDSAY human body is a perfect example that allows for middle-out modeling [301].

Other models, which we have worked on before and are currently incorporating into LINDSAY,

include the study of chemotaxis within a colony of evolving bacteria [302, 303], the simulation

of transcription, translation, and specific gene regulatory processes [304], as well as studies of

a�nity and cooperation among gene regulatory agents for the � switch in E. coli [289].

3.5.3 Component Architecture

LINDSAY Composer is written in Objective-C, but is also compatible with C, C++, Python

and any other scripting languages that can interface with the Objective-C runtime system.

The core framework of LINDSAY Composer is as minimal as possible. Having such a simple

framework makes it very easy for developers to extend the system with plugins that add new

component types, new component engines, and even new user interfaces. Without great e↵orts,

components can collaborate with each other due to the simplicity of a component’s API.

In LINDSAY Composer a simulation is represented as a hierarchy of components that encap-

sulate state and behaviour. A component may be registered with a computational engine (Fig.

3.9). For instance, one might have a physics engine managing rigid body interactions, those

rigid bodies would be represented in the simulation by physics components. It is not necessary
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Computational modeling of physiological processes across scales by example of the
circulatory system: (a) full body view, (b) close-up with upper skeleton, (c) inside the rib cage,
(d) approaching the main artery, (e) inside the main artery with red and white lymphocytes,
(f) close-up of a cluster of lymphocytes.
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Figure 3.9: A component hierarchy typical of most simulations. Boxes represent components,
the embedding of boxes within each other is representative of the component hierarchy, shading
is used to exemplify this.
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for a component to be registered with a component engine, as is the case with a component

that holds only position and orientation data, which we call a transform component.

Components can query their parents for siblings of a given type. Components can also query

the entire simulation for components that match a given expression. A common use for this

mechanism is for sibling components to share a transform component. For example, one might

have a physics component updating the transform, while a rendering component draws a 3D

mesh relying on the very same transformation information. In another instance, a camera

may be manipulated by a user interaction component that updates a transform component’s

orientation and position. A graphics component would then adjust the view in the direction

indicated.

Graphics Physics

Scene

Camera

Blood 
Vessel

Blood 
Cell

Transform

Transform

Transform

Mesh

Mesh

User 
Interaction

Figure 3.10: Example architecture of component engines: The square boxes at the top are
simulation engines for user interaction, graphics, and physics. Elements in the simulation,
such as blood vessels and blood cells, contain components for their rendering, interaction, and
physical properties. Those components register with the respective engines (denoted by the
arrows). Other components, such as transform and mesh, are not registered with a simulation
engine. As in Figure 3.9, the nesting of boxes (and circles) corresponds to a components place
within the component hierarchy.
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LINDSAY Composer uses a number of engines to form the core computational framework

(Fig. 3.10). For instance, a physics engine manages rigid body interactions and dynamics, a

graphics engine renders the simulation to the screen, a networking engine handles the distri-

bution of components to other nodes in a network, and an interaction engine allows the user

to interact with the simulation via mouse and keyboard or multi-touch enabled devices. Each

simulation engine iterates through the components it manages to update them. Figure 3.10

shows how components are associated with di↵erent component engines while still being part

of a component hierarchy.

Especially important for the interactive simulation control as well as for collaborative classroom

experiences are the networking components of the LINDSAY Composer [305]. A server com-

ponent is anchored into the simulation’s component hierarchy which replicates its siblings and

sends them over a network to one or more client components. There can be multiple servers

and clients within a single simulation. This allows for distribution of a shared simulation to a

number of client devices, which is a typical scenario in a classroom setting. It also allows for

interaction with a simulation via mobile devices such as the iPod Touch, iPhone or iPad.

3.5.4 Graphical Programming Interface

In this section we explore the LINDSAY Composer user interface. Figure 3.11 shows a blood

clotting simulation that we built with LINDSAY Composer. The simulation displays two sep-

arate views of the same model at di↵erent time steps [290]. At the top one can see red and

white blood cells, fibrinogens, fibrins, platelets, and other messenger molecules. All of these are

implemented as separate agents, that interact with one another and with the blood vessel wall,

which is lined by endothelial cells. Over time, one can see that the wound site is eventually filled

by platelets and fibrins, which stops the simulated bleeding. The bottom row shows the same

simulation from a perspective outside of the blood vessel, which is embedded in the circulatory

system of the virtual body (compare Fig. 3.8).

Building a simulation in LINDSAY Composer is achieved via a drag and drop interface. Users

can drag components from a library of component types into the simulation view, where they

will appear immediately if they have a graphical representation. Figure 3.12 shows a typical

screen display during the modelling process of a simulation.
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Figure 3.11: The blood coagulation simulation at di↵erent time steps (t
1

< t
2

< t
3

< t
4

). The
process is observed from two di↵erent perspectives: inside (a-d) and outside (e-h) of the vessel.
Di↵erent views are defined by cameras that can be navigated through and are located within
the simulations.

In the toolbar, at the top of the window, we see controls for the camera, for bringing up the

scene inspector (Fig. 3.13), for the frame rate, and for hiding the template library and timeline

views. The user may directly interact with the scene by way of a 3D navigation and selection

interface. Navigation and selection is performed via mouse and keyboard, or via networking

components through mobile devices with touch interfaces.

In Figure 3.12, the component library is displayed on the left-hand side. From here, components

are dragged into the simulation view on the right. Directly below the simulation view is the

timeline view. We use a timeline to control the lifetime and properties of components within

a simulation. This allows for the dynamic control of a simulation. The horizontal bars in the

timeline correlate with the objects that exist in the simulation.

Overlaying the topmost time-bar we see an interpolation graph, which is represented as a

component within the simulation. In our blood clotting simulation this graph corresponds to

the velocity of the blood within the blood vessel, hence we can simulate the pulsing action of

the heart on blood within a blood vessel. These interpolation components can be applied to

any compatible property of any component, or set of components within the simulation.

Another important part of the LINDSAY Composer interface is the inspection of templates and
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Figure 3.12: Components are dragged from the left into the rendering view on the right to
compose a simulation. An overview of the interaction processes is provided in a configurable
timeline (bottom-right). The centred overlay window shows an interpolation component that
directs the blood flow.
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of the hierarchy of a simulation (Fig. 3.13). We dynamically generate the interaction dialogs

for a component at runtime. This user interface allows for the realtime inspection and editing

of properties as the simulation runs. We also allow for preprogrammed interfaces by checking

for their existence at runtime.

Figure 3.13: (a) The LINDSAY Composer GUI for inspecting the scene, its hierarchy, and its
components.

3.6 The Educational Perspective

Medicine is replete with complex information spaces. Integrating physiology and pathology, as

well as functional anatomy, within true anatomical displays—as opposed to full cartoon images

of the body—gives users the opportunity to learn multiple content pieces at the same time.

From an educational perspective, we are approaching an application of cognitive flexibility

theory and constructivism within a simulation environment that most closely represents true

(not cartoon) anatomy.

Putting the tools in the hands of the users allows them to build their knowledge and to construct

pathways for their own learning. Each learner is able to pace their learning, and/or create a
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physiological or anatomical environment that suits their personal learning needs. Faculty is

able to construct, play, pause, rewind, re-create and deconstruct the learning environment in

order to emphasize, assess, or modify learning tempo and goals to meet learners’ needs.

3.7 Current and Future Work

Interactive Classroom After anatomical and/or physiological scenarios have been created

using LINDSAY Composer, one can use LINDSAY Presenterto run, demonstrate and explore

these compositions. We are currently working with instructors from medicine, nursing, kinesi-

ology, and veterinary medicine to turn our software into an e↵ective presentation toolset for the

classroom. Using the described client/server architecture, we are now able to create multiple

visualization and remote control components that are shared on a wireless network. This lays

the foundations to create innovative scenarios for inquiry-based learning and teaching. Using

iPods and iPads, we deliver visualizations to wireless devices, which, in turn, can be used to

inspect and control di↵erent aspects of a shared physiology model, which runs on a powerful

simulation server.

Remote Learning and Content Sharing Building an infrastructure for immersive visu-

alization revolutionizes the way human anatomy and physiology is being taught. Such 3D

contents can be shared worldwide across the internet by using 3D content sharing technologies,

where multiple users can see, “grasp” and interact with 3-dimensional anatomical objects—

from organs to cells—and observe the unfolding of simulated physiological processes. This

means, contents produced in one location can be distributed to other educational and research

institutions across the globe.

3.8 Conclusions

We described the LINDSAY Virtual Human project, gave details on its programming frame-

works, as well as its display, visualization, and interaction technologies. We also shared our ini-

tial experiences about how to bring computer modeling, 3D visualization and human-computer
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interaction technologies into medical classrooms. More information on the LINDSAY Virtual

Human project is available on our website: http://lindsayvirtualhuman.org.

http://lindsayvirtualhuman.org


Chapter 4

Interactive Multi-Physics Simulation

for Endodontic Treatment

In this paper we present a novel approach to simulating dental treatment of root canals. Pre-

ceding interactive simulation approaches to dental training focus on preparing access cavities

and working on the hard dentin of a tooth. Their common goal is to provide haptic feedback

necessary to impart manual dexterity to students. In contrast, we focus on learning about

the intricate complexity involved in root canal treatment, considering di↵erent root canal mor-

phologies, di↵erences in the texture of the pulp tissue as well as the interaction possibilities

o↵ered by di↵erent dental instruments at individual steps of the procedure. Due to this shift

in focus, new computing challenges appropriate for physical interactions emerge. In this paper

we elaborate on recent developments in realtime physics simulation and we demonstrate the

backend mechanisms needed to drive more complex dental training simulations, amalgamating

di↵erent representations for real-time physics calculations.

Sebastian von Mammen, Marco Weber, Hans-Heinrich Opel, Timothy Davison:

Interactive Multi-Physics Simulation for Endodontic Treatment. In: Proceedings of

Modeling and Simulation in Medicine Symposium at SpringSim 2015, Curran Associates,

Inc., 2015 , pp. 36–41.
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4.1 Introduction

Treating the root canal of a tooth becomes necessary if its pulp tissue gets infected. The

root canals are cleaned from the pulp, restored with a filling, and the access cavity is closed

again. There are more than seven million root canal treatments each year in Germany alone

[306]. Yet, it has been ascertained internationally that the rate of success of such endodontic

procedures is not satisfactory. In part this might be due to inconsistent protocols [307, 128],

partially to accidents during treatment, but mainly it is due to the persistence of infections

in the root canal system [308]. The frequent failure to clean root canals does not come as a

surprise considering the complexity of root canal morphologies (varying diameters, bifurcations,

isthmuses, and dividing and merging canals) [309], the available assortment of instruments,

and operation aids (mainly regarding magnification and illumination) [310]. Accordingly, the

following quote from [311] stresses the need for system comprehension to achieve successful

treatments: “A thorough understanding of the complexity of the root canal system is essential

for understanding the principles and problems of shaping and cleaning, for determining the

apical limits and dimensions of canal preparations, and for performing successful microsurgical

procedures.”

Although there have been approaches to virtual simulation and training of root canal treatment,

or endodontic therapy [312], they were rather limited in their scope, focusing on the first step

of the procedure, e.g. [313, 314]. As a first step, the dentist needs to prepare an access cavity

to reach the root canals’ pulp tissue. This first step is soon learned by dentistry students

training on extracted teeth or phantom teeth and it typically does not pose a great challenge.

Next, the dentist would clean out the root canals, removing the pulp tissue as meticulously as

possible in order to avoid the aforementioned persistence of infections. Loosening the soft pulp

material is performed using a dental handpiece equipped with an according bur and by means

of endodontic files. In order to thoroughly clean the root canals, they also need to be irrigated.

In this paper, we present an approach tackling these challenging tasks of endodontic therapy in

virtual reality simulation from a real-time multi-physics perspective. The concept comprises the

model representation, the computation of the interaction dynamics, and especially the coupling

between di↵erent conceptual physical representations, i.e. rigid and deformable bodies. The

remainder of this paper is structured as follows. In the next section, we briefly touch upon
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related work including virtual reality approaches developed for dental training and real-time

physics approaches. Next, we explain our concept, detailing the process of asset generation,

their physical representation and their physical interaction mechanics. Before summarising our

contributions and providing an outlook on future work, we discuss our approach in the light of

recent advancements in real-time physics simulation.

4.2 Related Work

Work related to our contribution can mainly be aligned with two directions: Virtual simulations

for dental training and approaches to real-time physics computation. In this section, we briefly

touch upon both these fields, starting with preceding virtual dental training approaches that

only rely on rigid body dynamics.

4.2.1 Virtual Dental Training

In the 1990s, DentSim was introduced into the market [129]. It is nowadays used to train

students at six universities across the U.S.A. It tracks the students’ activities by means of

video sensors that pick up signals from LED emitters that are integrated in the students’

dental instruments. Based on this data, feedback can be provided about the students’ treatment

success, while working on phantom teeth. DentSim was the first system of its kind to undergo

extensive validation, e.g. [315].

As mentioned in the introduction, a moderate number of computer-based dental training sys-

tems was developed that focused on haptic feedback. Among others, a multi-modal setup was

presented that established a stereoscopic view by a shutter glass-filtered projection on a mirror

just above an operation space [316]. Guiding an instrument for operating on a so-called phan-

tom head was simulated relying on what is nowadays called a Sensable Phantom Omni device,

a force-feedback contraption that o↵ers three degrees of freedom at rather small dimensions.

PerioSim[317], Voxel-Man [130], or the Virtual Reality Dental Training System [133] all utilise

the Omni device to let the student acquire manual dexterity. In the context of endodontics, all

these approaches only o↵er the preparation of the access cavity. Nowadays, there are numer-

ous force feedback devices available and, accordingly, additional haptics-oriented concepts have
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been presented [134, 318]. Yet, to the knowledge of the authors there is not a single virtual

reality solution that attempts to teach the complexity of endodontic therapy’s actual challenge,

namely cleaning root canals of complex morphologies.

4.2.2 Real-time Physics Approaches

Interactive simulations o↵er the means to manipulate model components to various degrees.

Depending on the level of abstraction, these manipulations may be o↵ered at the level of

graphical objects that can be created, deleted, displaced or otherwise adapted to fit the user’s

mental picture. In physics-aware model environments, e.g. where several objects may not fill

the very same spot, this kind of interaction defines the need for the integration of a physics

engine. A comprehensive overview of the taxonomy of the vast field of physics simulation is

provided by [319]. However, in the scope of this paper, we focus on real-time methods of

forward dynamics, considering three categories: rigid body dynamics [320, 321], deformable

body dynamics [322], and particle-based fluid dynamics [323].

At the very foundation, the general laws of motion drive physics engines. Non-penetration

constraints, collision resolution and friction forces, and complementary constraints round o↵

the field of rigid body simulation. For calculating the respective forces, various approaches exist,

e.g. the penalty force method, Lagrange multipliers, impulse-based simulation, and reduced

coordinate formulation. Systematically removing degrees of freedom among model components

by introduction of constraints, one can define mechanical joints between rigid bodies. Model

constructs that are comprised of a multitude of joined links are referred to as articulated bodies

[324].

Deformable bodies can be understood as yet another extension of articulated bodies in the sense

that the nodes of a physics representing mesh are all intertwined. An overview of traditional

modeling approaches to deformable bodies in an animation context can be found in [325]. Diziol

et al. presented an approach to computing incompressible deformable mesh dynamics that is

superior to previous real-time approaches in terms of e�ciency and accuracy [322]. In addition

to various optimisation steps, this approach benefits from the simplifying idea of inferring the

e↵ecting forces on individual nodes of the physics mesh from the di↵erences to the original

shape of the surface.
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Fluids can be computed at interactive speeds relying on the smoothed particle hydrodynamics

model [323]. Here, fluid dynamics emerge from the idea that a large quantity of particles

interact. The local neighbourhood of each particle determines its individual, virtual density.

Di↵erences in density among neighbouring particles result in pressure, which in turn motivates

the particles’ acceleration and velocity. Recently, a particle-based model was published that

promises a unified approach to multi-physics in real-time [172].

4.3 Towards Multi-physics Representation with Rigid &

Rigged Bodies

For our first demonstrator of virtual root canal treatment simulation, we make extensive use of

the broadly established methods of rigid body physics calculation. We use it in two di↵erent

ways. (a) To cope with drilling, shaping, filing of hard dentin material. And (b), to trace the

deformation of flexible dental files to unearth insights about their interactions in the root canal

system. Before detailing both of these aspects, we outline the general interaction scenario of

our virtual endodontics simulation.

4.3.1 Interaction Scenario

The asset base of our simulation is comprised of a representation of the tooth-root complex and

the dental instruments being used to treat it. The tooth data (Figure 4.1) has been provided

from experienced researchers in the field of computer tomographic imagery. It was captured by

means of a Micro-CT scanner and achieved a spatial resolution of about 20 indexmicro microm.

Mesh surfaces are extracted from the volumetric data using the Marching Cubes algorithm in

order to render the tooth in an interactive display. Initially great numbers of vertices (roughly

700.000 in the displayed case) can be reduced to about 100.000 using standard mesh decimation

techniques without loosing crucial morphological or structural information.

Figure 4.2 shows some of the instruments needed to perform endodontic therapy. We recreated

these tools in a 3D modelling application. Towards this end, a simple two-dimensional shape

that retraces the cross-section of the tool tip is laid out, segments of its extruded volume are
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(a) (b)

Figure 4.1: ISO Surfaces extracted from volumetric CT data of a molar. (a) An opaque
material emphasises the coarseness of the surface structure. (b) A transparent material reveals
the morphology of the internal root canals.

aligned on top of each other and deformed using twist, skew and proportional scaling modifiers.

Figure 4.3(a) displays an according three-dimensional model.

Figure 4.2: From top to bottom: Two files that are manually operated to remove infected pulp
tissue as well as one bur that works with a motor-driven handpiece.
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(a) (b)

Figure 4.3: The 3D model of an endodontic file. (a) The handle and the geometry built from
the cross-section of the instrument’s tip. (b) A conceptual display of the instrument’s physical
representation as a rigged body—stress is propagated along an array of box colliders linked by
socket joints.

4.3.2 Drilling, Shaping & Filing

As shown in preceding works on virtual dental training, the volumetric tooth data informs

the physical interactions with dental instruments [326]. In order to speed up the physics

calculations, we focus on improving the detection of collisions between instruments and the

tooth matter. Distance fields provide the core technology for our implementation [327]. Here,

the distance field information tells us how far away from a dentin or pulp tissue surface the

dental instrument is, or alternatively, how far it has penetrated the according substance. The

distance field also provides an e�cient data structure to calculate the contact normal as well as

the speed of the incident. A penetration event can only occur, if an according force was applied

[328]. In order for the user to adjust the applied force appropriately, he might work with one of

the aforementioned force-feedback devices or react to corresponding visual cues [329]. In case a

su�ciently great force is applied, we remove the intersecting area from the uniform voxel grid

and we update the local distance values. The distance field is generated following the concept

of level-set segmentation which ensures that the irregularities of the geometry of the tooth, i.e.
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bumps and concavities, are considered but scalable patterns are e�ciently and parametrically

represented [330]. Next, the level-set segmentation is translated into the distance field for the

tooth and e�ciently used for testing and resolving collisions [331]. There is also a GPU-based

implementation for this approach [332].

4.3.3 Tracing File Deformation

For preparing access cavities, as has been the usual goal for computer-based endodontics sim-

ulation so far, manipulating the dentin voxel volume is the target of any physical interaction.

However, especially in case of cleaning the root canals, it is essential to also consider the im-

pact of the physical interactions on the dental instruments. For our first demonstrator, we

approached this challenge by fitting an array of box colliders around the endodontic files with

a joint connecting each collider to its neighbour (Figure 4.3(b)). The spring dampening coe�-

cient of the joints define the overall body’s reactive sti↵ness, whereas a steady force is working

on each link to recover the original shape. This recovery force considers the file material, the

angular deviation at the joints and it points towards the central axis of the file. Screenshots

that visualise this interaction from within our simulation are presented in Figure 4.4.

4.4 Discussion

The e↵ectiveness of our current demonstrator has been confirmed by the domain expert on our

team as well as by closely collaborating university researchers in endodontics. Its hardware

setup features an Oculus DK2 head-mounted display and a LeapMotion finger tracking sensor.

In order to increase its accessibility, we need to make it less dependant on special hardware

and desktop PCs. Instead, we are in the process of developing a head-mounted VR solution

based on ZEISS VR One or Samsung Gear VR, which feature top-of-the-line smart phones and

tablets for computing and visualising.

In this light, due to the comparably low processing power of mobile devices, the e�cient calcula-

tions of the presented approach based on distance field-based collision detection and joint-based

deformation are all the more important. However, our concept su↵ers from certain drawbacks.

The greatest ones are the lack of fluid simulation and the strong limitation of the deformable
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(a)

(b)

Figure 4.4: Screenshots from within our simulation environment. (a) The endodontic file
penetrates soft pulp tissue. (b) The file grinds against the root canal and bends as a result.

dynamics implementation. The latter works great for simulating the flexibility of the dental

tools. However, it does not su�ce to simulate deformations of pulp tissue. As the scraped o↵

tissue sometimes needs to be flushed out, fluid simulations are yet another important aspect

that we have not considered, yet.
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Our aim for the next demonstrator is to translate our models into a particle-based representa-

tion similar to [172]. For this to happen, we will segment the volume data of the tooth into its

di↵erent structures, and then manually classify their material properties. We will then use a

surface reconstruction algorithm ( Marching Cubes [333] or Dual-Contouring [334] ) to generate

the surface particles. To generate particles beneath the surface, within the volume of a tooth

structure, we simply generate particles for each sample-point on a uniform grid. For soft-bodies

we can use the density information from the volume data to parameterise the softness of the

particles.

4.5 Conclusion & Future Work

Based on seminal dental research literature, we motivated the need for understanding root

canal morphology. We presented an approach to address this challenge by augmenting the

information typically available in a dental clinic in a virtual training environment. Based on

expert feedback, we determined that such augmentation has to happen in the context of the

procedural steps that would be performed during clinical therapy. In contrast to preceding

virtual dental training simulators, we understand that only a mature multi-physics approach

can allow for the expected rich set of interaction dynamics. We have taken the first steps

towards this goal, integrating rigid and deformable body dynamics for the targeted application

domain. In order to allow for richer calculations, we introduced a level-set-based method to the

domain for fast collision detection using signed distance fields. In order to address the need for

deformable body physics, which is essential in endodontic simulation, we introduced an e�cient,

if specialised, method to simulating flexible dental files. In particular, we provided a rigged

body structure aligning several box colliders along the geometry of the file. The discussion

revealed that our approach still has certain drawbacks. Yet, at the same time, we have already

outlined a plausible path to generalise the presented deformable body concept and to introduce

and couple the existing physics representations to fluid mechanics.



Chapter 5

Swarm-based Computational

Development

Swarms are a metaphor for complex dynamic systems. In swarms, large numbers of individuals

locally interact and form non-linear, dynamic interaction networks. Ants, wasps and termites,

for instance, are natural swarms whose individual and group behaviours have been evolving

over millions of years. In their intricate nest constructions, the emergent e↵ectiveness of their

behaviours becomes apparent. Swarm-based computational simulations capture the correspond-

ing ideas of agent-based, decentralized, self-organizing models. In this work, we present ideas

around swarm-based developmental systems, including swarm grammars, a swarm-based gen-

erative representation and our e↵orts towards the unification of this methodology and towards

improving its accessibility.

Sebastian von Mammen, David Phillips, Timothy Davison, Heather Jamniczky,

Benedikt Hallgŕımsson, Christian Jacob: Swarm-based Computational Development. In:

Morphogenetic Engineering: Toward Programmable Complex Systems, Series:

Understanding Complex Systems, ch. 18, pp. 473–500, Springer Verlag, 2012.

5.1 Introduction

Arithmetic operations drive computational processes by updating existing variables or by in-

fering new ones. The selection of operands determines a topology of dependencies among data
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which may change over the course of a computational process. In particular, intermediate com-

putational results may control the flow of directives, their sources and their targets. Ultimately,

the purpose of a computational process is to create or change information in accordance with

goals such as data storage and retrieval, communication, content creation, or data validation,

visualization and prediction (simulation).

Computational representations are abstraction layers which connect particular models from a

scientific domain (domain models) with corresponding models for a provided simulation plat-

form (platform models) [335]. Similar to knowledge representations [336], special representa-

tions have been studied and designed in the context of simulating developmental processes such

as the formation of molecular structures [337], growth and proliferation of cell populations, and

structural developments at the organismal level [338].

Not only do these respective computational developmental representations serve di↵erent mod-

elling domains but they also rely on various mechanisms of abstraction. L-systems [338], for

instance, emphasize the formation of structure based on the generation of symbolic sequences

by means of grammatical substitution [339]. Cellular automata (CAs), on the other hand, which

are also considered one of the first developmental representations, focus on pattern generation

through state changes [340]. Although mitosis and cell di↵erentiation provide a scientifically

adequate discretization that bridges from the domain model to the platform model, CAs and

L-systems primarily target development at the cellular level.

Focus areas of developmental models have been simulations of the life cycle of cells as well

as molecular and intercellular communication—touched upon by CAs and further explored as

random boolean networks (RBNs) [341]. Spatial reconfiguration of cell colonies, e.g. through

polarization and migration, and thereby changes in the interaction topologies, also play signif-

icant roles in developmental systems [342].

In this chapter, we present our work on swarm grammars (SGs), a developmental representation

that we have introduced to explicitly combine the ideas of established developmental represen-

tations with those of artificial swarm systems. In particular, production rules drive the life

cycle of agents (representative of molecules and cells), while the agents’ reactivity and motility

continuously change the interaction topology of the system. In the next section, we briefly

outline work that relates to SGs. Section 5.3 presents various swarm grammar representations

that we have designed over the years as well as means to breed SG configurations through
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evolutionary computation [343, 344, 345, 346]. In this context, we also present SG examples

in the domains of art, architecture and biology [347, 348, 349]. Section 5.4 summarizes and

concludes our work.

5.2 Related Work

In the following, we want to build a terminological hierarchy based on patterns, structures,

and morphologies. A pattern is commonly defined as “an arrangement or sequence regularly

found in comparable objects or events”. A structure is “the arrangement of and relations

between the parts or elements of something complex”. A morphology “[...] deals with the

form of living organisms, and with relationships between their structures” [350]. Morphologies

describe the structures of organisms, whereas the recognition of their structural patterns reveals

insight into the complex arrangements of the parts of an organism. Consequently, the borders

blur between patterns and complex structures when facing the challenges of morphological

engineering. Reductionist [351] and quantitative [352] analyses of morphological processes

necessitate identification, measurement [353] and simulation of complex, emergent processes

[335] and integrating, multi-scale models [301]. Exploring these scientific paths is exciting and

important. In this chapter, however, we present our findings that are mainly concerned with

swarm grammars as a unified swarm-based developmental representation.

5.2.1 Complex Patterns through State Changes

In cellular automata (CAs) lattice grids are populated with cells that change their states—

frequently represented as a binary digit—in accordance with their neighbours [340]. As under-

lined by Giavitto et al.’s categorizations [354], CAs are dynamic with respect to their states,

but not in regard to their interaction topologies. Thus, the development in CAs is limited to

state-based pattern formations. These patterns, however, may be seen as structure formations

nevertheless. Wolfram introduced four classes of complexity for patterns generated by the state

evolution of one-dimensional CAs [355]: Those that converge (1) to a homogeneous state (cor-

responding to limit points), (2) to a heterogeneous state (corresponding to limit cycles), those

that exhibit (3) chaotic behaviour (corresponding to chaotic attractors), and those that are (4)



5.2. Related Work 105

self-organizing, reaching attractors of arbitrary complexity from random initial conditions.

5.2.2 Complexity Measures

Several aspects pose starting points to reveal the complexity of a (computational) model, or the

lack thereof. Shedding light on the formation and evolution of high-order life forms, Schuster

summarizes various approaches to measure complexity [261]: (1) Ecological diversity can lead

to systems occupying niches and yield involved food webs. (2) Construction processes can add

to the complexity of a system by providing additional functionality such as providing shelter.

(3) Formally, logical depth can also measure a system’s complexity. Schuster relates systemic

hierarchies (from genes over cells to organisms) to logical depth and emphasizes its relevance

for biological systems. Hornby aims at the very same idea, introducing the scalable metrics

of modularity, reuse and hierarchy (MR&H), which he applies it to measure structure and

organization [353]. In the given context, scalability implies that the complexity of a system

increases with size. In a series of experiments, Hornby was able to show that multiplication of

the MR&Hmetrics and normalization by either the design size or by the algorithmic information

content (AIC), which accounts for the shortest program to produce a given outcome, yield the

desired scaling e↵ect in complexity.1

5.2.3 From Life-Cycles to Structure

Although we have introduced the notion of categories of complexity in the context of CAs

(Section 5.2.1), L-systems, too, can be subjected to structural measures as described in Sec-

tion 5.2.2). Lindenmayer and Prusinkiewicz designed L-systems in order to retrace the growth

of bacterial colonies and plants [338]. L-systems are a formal system that combines the pro-

ductivity of formal grammars with geometrical information to direct and translate simulated

development into three dimensions. In particular, symbols that encode a geometrical command

such as L (left), R (right) or F (forward) are substituted in parallel in accordance with a set of

production rules. This is supposed to retrace the developmental stages of a naturally growing

structure. Special characters such as [ or ] that are part of the substitution strings introduce

1Ra, the average reuse of symbols during program execution works well as a structural measure when
normalized against the design size, whereas Rm, the average reuse of modules, yields a scalable measure when
divided by the system’s algorithmic information content [353].
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compartmentalization, i.e. hierarchical information, into the structural outcome. Generally

speaking, L-systems loose the appeal of universality that can be claimed for CAs by introduc-

ing specialized operators that conduct structural development in an iterative fashion.

At the same time, these geometrical directives render L-systems convenient for describing struc-

tural development of natural systems such as plants [356, 357], including simulated plants that

interact with their environment [358, 359, 360]. Original work in genetic programming of L-

systems [361, 362, 363] has led to several platforms for L-system evolution [364, 365, 366] and

the breeding of virtual plants in a coevolutionary scenario, which even displays competitive

arms-race situations [367]. Beyond plants, L-systems have also been used to evolve virtual

creatures and their control networks [368, 369] as well as for the reconstruction of retina and

blood vessel structures [370, 371].

The appeal of CAs is that the interaction topologies remain fixed, while patterns develop based

on state changes over time. In L-systems the substitution of existing symbols e↵ectively results

in cell di↵erentiation (state changes), the creation of new or the deletion of existing symbols.

Thus, the neighbourhood topology can be altered as well as the next production step in the

case of context-sensitive L-systems. However, changes in the interaction topology in L-systems

are limited to the symbols’ immediate neighbours. When modelling molecular di↵usion or

cell locomotion and migration in an agent-based manner, interaction topologies undergo great

dynamics (e.g. [342]). Giovatti et al. termed such systems D2S in which both the states as

well as the topologies are dynamic [354].

5.2.4 Breeding Solutions

The great degree of freedom with a D2S system brings about the challenge of a largely ex-

tended configuration space. Evolutionary algorithms (EAs) are a means to find sets of diverse,

good solutions in such large search spaces. We applied genetic programming techniques (GP)

to breed swarm grammar systems interactively [343] through the EVOLVICA genetic pro-

gramming framework [365]. We bred swarm grammars like a gardener in a three-dimensional,

immersive environment [344]—watering, weeding and recombining individual specimens that

grow in a shared environment. Most recently, we let swarm grammars evolve that generated

diverse and interesting architectural models [345]. We describe these three evolutionary ap-
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proaches in detail as part of the following section which presents di↵erent extensions of swarm

grammars.

5.3 Swarm Grammars

Our first swarm grammar systems were composed of two parts: (1) a set of rewrite rules,

which determine the composition of agent types over time, and (2) a set of agent specifications,

which define agent-type specific parameters that govern the agents’ interactions [343]. Next, we

assigned the required genotypical information and the rewrite rules to individual agents which

allowed for co-existing and co-evolving swarm grammars [344]. At that point, we identified

the distinction between agent behaviours and rewrite rules as an artificially created artefact

which we had to overcome [345]. As a result, the individuals’ rewrite rules were extended

and turned into general agent rules [54, 55], including the special ability to create new agents

or construction elements and to remove existing ones. In analogy to biochemical processes

of secretion and di↵usion [301], we refer to these abilities as metabolic operations. Lastly,

in order to make swarm-based modelling accessible to non-computer scientists, we have been

pushing toward a standardized swarm-based modelling and simulation framework [346]. In

the latter representation, the relationships among swarm individuals are emphasized and the

swarm agents’ behavioural rules are streamlined and expressed in graphical notation. In this

section, we are going to present these di↵erent stages of swarm grammars and illustrate their

respective features. A brief overview of these stages is shown in Table 5.1.

representation motivation example section

basic swarm grammar swarm dynamics + growth agent-agent and agent- 5.3.1
environment interactions,
artistic exploration through
interactive evolution

decentralized SG individual behaviours artistic exploration through 5.3.2
interactive evolution

decentralized, event-based interactions breeding architecture through 5.3.3
rule-based SG automatic evolution
swarm graph grammar improve accessibility and simulation of biological 5.3.4

standardize simulation developmental processes

Table 5.1: Four evolutionary stages of swarm grammars.
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5.3.1 Swarm Grammars with Centralized Population Control

A basic swarm grammar system SG = (SL,�) consists of a rewrite system SL = (↵, P ) and a

set of agent specifications � = {�
a1 ,�a2 , ...,�an} for n types of agents a

i

. The rewrite system

SL is a probabilistic L-system with axiom ↵ and production rules P , as described in [338] and

[365]. In the simplest form of context-free 0L-systems, each rule has the form p
✓! s, where

p 2 ⌦ is a single symbol over an alphabet ⌦, and s 2 ⌦⇤ is either the empty symbol (�) or a

word over ⌦. The replacement rule is applied with probability ✓. Each agent a
i

is characterized

by a set of attributes, �
ai , which can include its geometrical shape, colour, mass, vision range,

radius of perception and other parameters that determine its overall dynamics and interaction

behaviour.

The Swarm Agents’ Interactions

Figure 5.1 depicts a common view of a swarm agent in three-dimensional space. We configure

the local flight behaviour of an agent according to a simple ‘ boids’ model as it comprises

the general ideas of local and global attracting and repelling forces [1]. More specifically, at

each simulation step, an agent’s acceleration vector ~a is set to a weighted sum
4P

i=0

c
i

~v
i

, with

c
i

2 [0; 1] being the weights for normalized vectors ~v
0

to ~v
4

that result from the computations

of separation, cohesion and alignment urges among local agents as well as from the individuals’

drive towards a global target, and the consideration of some noise. The weights c
i

are part of

the individuals’ genotypes as they determine their flight behaviours.

Figure 5.1: The swarm agents are typically represented as pyramidal cones oriented towards
their velocity. An agent’s field of perception is determined by a radius r and an angle �.
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SL
a

= {A, {A! BBB,B ! A}} SL
b

= {N, {N ! NN}} SL
c

= {I, {I ! I}}
(a) (b) (c)

Figure 5.2: Swarm grammar agents interacting with their environment and their corresponding
swarm rewrite systems.

As soon as it has run out of energy, an agent stops acting and is not considered by the SL-

system rules any longer. Energy levels are inherited through replication. The energy level also

influences certain properties of the built 3D structures such as, for example, their size.

Several values characterize the construction elements or building blocks that are placed in space

by the swarm agents after it has flown for a certain number of iterations I
d

. The shorter these

intervals are, the smoother the appearance of the emerging construction. The colour and the

numbers of edges define the design of the cylindrical shapes.

For example, a swarm grammar SG
a

= (SL
a

,�
a

) with

SL
a

= (↵ = A,P = {A! BBB,B ! A}), (5.1)

�
a

= {�
A

,�
B

} (5.2)

will generate a sequence of swarm composition strings A, BBB, AAA, BBBBBBBBB, etc.

At each iteration step, either each type-A agent is replicated into three B agents, or agents

change from type B to type A. If A agents have no separation urge (c
1

= 0), and B-type

agents do separate (c
1

= 1.0), the generated swarm of agents creates a tree-like structure as

in Figure 5.2(a). Note that here and in the following examples we assume ✓ = 1, that is a

matching rule is always applied.
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In particular, Figure 5.2(a) displays 243 agents—which are visualized as pyramidal shapes at

the branch tips. Both occurring agent types A and B have an upward urge. Since B-agents

repel from each other, a bushy crown emerges. Figure 5.2(b) shows a similar set of swarm

grammar agents that is forced to climb up a wall, which they cannot penetrate. Once the

agents reach to the top of the wall, they are drawn towards a fixed point above and behind

the wall. The small flock of agents is visible just ahead of the top branches. In Figure 5.2(c)

agents are attracted towards a rotating ‘sun’ object, which makes them follow a spiral during

their upward path. The structure on the right is constructed by a single agent, whereas the

left structure involves 20 agents which are repelling from each other.

Each step of applying the production rules (in parallel) represents a decision point for all agents

within the system. Contrary to L-systems [338], where only a single ‘turtle’ is used to interpret a

string, we employ a swarm of interacting agents. We do not need to add navigational commands

for the turtles within the grammar strings, because the swarm agents navigate by themselves,

determined by the agent specifications as part of the SG system. More detailed examples of

swarm grammar rewriting that demonstrate further application aspects are given in [343].

Interactive Exploration of Swarm Grammar Spaces

Combining swarm systems with evolutionary computing has to our knowledge only been consid-

ered in the context of particle swarm optimization (e.g., [372, 373]) and in swarm-based music

generating systems (e.g. [374, 155]). Emergence of collective behavior has been investigated

for agents within a three-dimensional, static world [375], but this did not involve interactive

evolution. Our Genetic Swarm Grammar Programming (GSGP) approach incorporates both

interactive, user-guided evolution as well as the utilization of emergent properties from inter-

actions of a large number of agents.

The rewrite rules and agent parameters are represented as symbolic expressions, so that GP

can be used to evolve both the set of rules as well as any agent attributes. This follows our

framework for evolutionary programming, EVOLVICA [365], where all rewrite rules and agent

parameters are encoded as symbolic expressions [376]. For the examples we present here, only

context-free rules with a maximum string length of three (|s| = 3) are applied. We allow at

most five rules and up to three di↵erent types of swarm individuals per SG-genotype.



5.3. Swarm Grammars 111

Figure 5.3: Screenshot of the Inspirica GUI that enables interactive evolution based on Math-
ematica in combination with its genetic programming extension EVOLVICA.

In our evolutionary swarm grammar experiments standard GP tree-crossover and subtree mu-

tations are the only applied genetic operators [365]. We use an extension of Inspirica [376], one

of our interactive evolutionary design tools, to explore the potential of the described swarm

grammar systems.

Figure 5.3 displays a screenshot of the Inspirica [376] user interface that helps to interactively

evolve swarm grammars. All windows display the construction process as it occurs. All designs

are true objects in 3D space, hence can be rotated, zoomed and inspected in various ways.

After assessment of the presented (twelve) structures, the swarm designer assigns fitness values

between 0 and 10 to each solution, and proceeds to the next generation. By means of this

approach, one can easily—within only a few generations—create structures as illustrated in

Figure 5.4.

The impact of the inter-breeding process, accomplished through crossovers of the SL-system

grammars and their associated agent parameters, is illustrated in Figure 5.5. The replication

of an agent (as determined by the grammar) and its associated constructions cease as soon as a

swarm agent runs out of energy. Since the energy level of an agent is linked to the radius of the

built cylindrical shape, the structures tend to look like naturally grown, with smaller tips at

the ends. If the agents’ energy loss, I
e

, is very low, however, the radii of the cylindrical objects
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(a) (b) (c) (d)

Figure 5.4: Examples of Evolved Swarm Grammar Phenotypes: (a) Pointy yet smooth nodes
connect with long thin branches. (b) A flower-like structure created by a single mutation. (c)
Spinning and whirling groups of swarm agents create a woven 3D pattern. (d) An organismic
structure with growing tips.

(a) (b) (c)

Figure 5.5: Examples of the impact of interactive breeding: (a) and (b) show two phenotypes
that were interbred and whose o↵spring (c) successfully acquired characteristics of both par-
ent structures. Investigation of the genotypes confirms that a recombinational transfer of a
recursively applicable grammatical rule leads to the complex mesh structure in (c).

hardly decrease. Since the energy level is one possible termination criterion, constructions that

keep their radii approximately constant often appear in tandem with vivid growth. These

e↵ects are illustrated in contents/PART2-02-Development/Figures 5.2 and 5.4.

5.3.2 SG Individuals with Complete Genotypes

In the previous examples (section 5.3.1) swarm grammars are simulated within separate spaces.

In an immersive design ecology, however, one could grow large numbers of swarm grammar

structures in a co-existing and co-evolutionary fashion. The encountered phenotypes can then

result from massive interactions of heterogeneous swarms. For this to happen, each swarm
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agent has to carry the complete genetic information of a swarm grammar SG = (SL,�)—this

also allows for realtime mutations and crossbreeding of specimens in the virtual environment.

This extension of SGs is not unlike in multicellular organisms, where the complete genetic

information is passed from parent to daughter cells, and where the di↵erentiation of a cell is

performed through reading and expressing specific genetic information.

Spatial Breeding Operators

Our immersive user interface integrates two aspects: visual representation and intuitive ma-

nipulation by an external breeder or designer. The latter mechanism is realized by the already

mentioned spatial breeding operators, or breeder volumes. Figure 5.6 shows a breeder vol-

ume that encloses several swarm grammar agents. Swarm agents that pass through a volume

(a sphere in this case) can be influenced in various ways. We use breeder volumes for the

crossover and mutation operators, for moving and copying swarm agents, and for boosting

their energy levels. Analogous to the watering of plants in a garden, fitness evaluations are

only given implicitly by providing more energy to selected groups of agents. In order to facil-

itate the selective evolutionary intervention, breeder volumes can be placed at fixed positions

to perform operations on temporary visitors with predefined frequencies. Additional visuals

allow to keep track of previous agent selections. Figure 5.6(b) depicts how previously enclosed

agents remain associated with the according breeder volume. This relationship is visualized by

the connecting lines.

The visualization interface enables the moving, rotating, and zooming of the camera, or the

saving and restoring of specific views and scenario settings (Fig. 5.7). Most of these procedures

are already incorporated in the agent software environment BREVE which we use as our display

and simulation engine [375]. In addition to aspects of visualization, the supervising breeder is

equipped with tools to select, group, copy, and move swarm grammar agents. This enables the

breeder (designer) to influence the course of evolution within the emerging scenario. The set

of possible manipulations also includes mutation and crossover operators to manually trigger

changes of the genotypes that encode the swarm grammar rules and the agent parameters.
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(a) (b)

Figure 5.6: (a) By means of volumetric tools the immersed breeder can manually select and
tinker with the present specimens. (b) Visual cues such as connecting specimens to breeder
volumes via dashed lines allow the breeder to keep track of sets of selected agents.

The Swarm Grammar Gardener

Figure 5.7 illustrates how a breeder can influence the emerging building processes within a

simple ecology of swarms. In Figure 5.7(a) two swarm agents have built a cylindrical structure

with a small side branch. Both agents, which have run out of energy, are still visible at the

top left and to the right of this construction. In the next step (Fig. 5.7(b)) a breeder sphere is

introduced so that it encloses the agent on the right. Through a contextual menu, this agent

is ‘revived’ by replenishing its energy reservoir. Subsequently, the agent resumes its building

process, generates an additional side branch and extends the overall structure further to the

right (Fig. 5.7(c)). A similar procedure is applied to the agent on the left. It is captured by

the breeder sphere and triggered to first replicate, i.e., make copies of itself, and then resume

construction (Fig. 5.7(d,e)). This generates further expansions of the structures and—after

further energy boosts (Fig. 5.7(f))—results in the structure depicted in Figure 5.7(g). The

pattern continues to grow until the agents run out of energy again.

This is only an example of how external manipulation by a breeder, the ‘ gardener’, can influence

the agent behaviors, the building or developmental processes. Their evolution as agents can

change their respective control parameters during replication. Agents of a specific type share

a swarm grammar, but agent groups can be copied as well, so that they inherit a new copy of

their own swarm grammar, which may also evolve over time. This can be accomplished either

automatically or through direct influence from the gardener. Figure 5.8 gives a few examples



5.3. Swarm Grammars 115

of evolved swarm grammar ecologies and extracted structures at di↵erent stages during their

evolution.

(a) (b) (c)

(d)

(e) (f) (g)

Figure 5.7: Illustration of Interactive Manipulation of Swarm Grammar Agents by an External
Breeder. (a) Two agents create an initial structure. (b) A breeder sphere locally infuses energy.
(c) Further growth is initiated by the additional energy. (d-e) Replication of an agent triggers
further parallel construction. (f-g) Expansion of the structure is continued after another energy
influx.

Swarm Constructions in the Arts

In the examples above, the aesthetic judgement of a breeder drove the evolution of swarm

grammars. This works particularly well when an artist searches for innovative expressions of

certain artistic themes. Swarm grammar constructions are special in that the dynamics of their

construction processes are captured within the emerging structures. Local interactions deter-

mine the placement of construction elements and the flight formations of the swarm. Inherent

in any swarm system, the agents’ actions and reactions result in a feedback loop of interdepen-

dencies [117]. The diagram in Figure 5.9 hints at the complex relationships that arise in boid

systems [1]. Here we don’t even consider indirect communication beyond the ever changing

neighbourhood relations between the swarm individuals: A swarm agent i perceives a set of

neighbours that determine its acceleration. Its changed location, in turn, a↵ects those swarm

mates that perceive i as a neighbour. The emerging dynamics are captured in structures that
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Figure 5.8: Collage of Designs Generated by Swarm Grammars. The figure in the centre
illustrates a swarm grammar garden ecology, within which the surrounding designs were created.
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exhibit liveliness and spontaneity, contrasting themes, rhythmic movements, tension, organic

looks, and rigid forms.

Perception

Swarm
 Agent i 

State

Action

S P

S P

S P

S P

S P

S P

neighbors of iagents seeing i

Figure 5.9: The black arrows in the upper box show the direction of influence between percep-
tion, action and state of a swarm agent i. The S-P tuples stand for the state and perception
modules of other agents that interact with agent i.

Consequently, the artistic interpretation of SG structures can support artistic work in several

ways. For example, we composed pieces of computer-generated SG structures and traditionally

painted motives [349] and looked at inspiring themes and concepts of artistic works as a whole

[347]. Within these explorations—inspired by the architectural potential of swarm grammars—

the artist (S.v.M.) combined a collection of swarm structures to create surreal, artificial worlds

(Figure 5.10 (a) and (b)). In about 40 interactive evolutionary experiments, the artist bred the

sets of swarm grammar structures displayed in Figure 5.10 (c) and (d).

During the evolutionary runs, the artist followed two main objectives. First, robust looking

beams should emerge that form a structural mesh, thus opening vast spaces. Secondly, fuzzi-

ness, continuity and the resemblance to organic forms should warrant the authenticity of the

generated virtual worlds. The colour gradients in the backgrounds emphasize the wholesome,

fluent structural architecture in Figure 5.10(a) and the liveliness and dynamics caught in the

erratic structures of Figure 5.10(b) with warm and cold colour palettes, respectively.

5.3.3 Rule-based Swarm Grammars

As a second generalization of our SGs, we wanted to go beyond fixed parameters, such as the

regularly timed application of reproduction rules or the continuous placement of construction

elements. SG rules are now expanded by conditions that each individual agent would relate to,
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(c)

(a) (b) (d)

Figure 5.10: Diptych of the two pieces (a) caméléon and (b) bighorn sheep. Acrylic medium on
canvas, 23” x 38”. Selections of swarm grammar structures bred for the diptych are displayed
in (c) and (d), respectively. (S.v.M., 2008)

e.g., specific internal states or perception events. An example of such a rule-based genotype is

illustrated in Figure 5.11.

Breeding Architecture

Perception-induced rule execution allows for indirect, so-called stigmergic communication by

which social insects, such as ants, termites and some wasp and bee species, are assumed to

coordinate large parts of their construction behaviours [377, 229, 230]. Stigmergy can then be

harnessed to create assortments of innovative architectural SG designs by means of computa-

tional evolution [345, 348]. In order to automatically drive the evolutionary processes, we need

a way to assign fitnesses to SG specimens. There are several aspects that should be taken into

account when it comes to the measuring of structural complexity, as we have outlined in section

5.2.2.

In addition to the analysis of the genotype of a swarm grammar, two aspects can be incorpo-

rated into the fitness assignment of an evolutionary algorithm: (1) the construction processes

and (2) the emerging structures. Structural analysis is either very course grained, consider-

ing for example the overall volume and the proportions, or computationally very costly, for

instance when attempting to identify hierarchies and re-occurring modules. Therefore, we put

an emphasis on the observation and classification of the construction processes.
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<RULE>

</RULE>

</HEAD>

</BODY>

<HEAD>

<BODY>

Construction Rod

Construction Template

Reproduction A B

Figure 5.11: An example of a behavioural rule of a swarm grammar agent. Instead of continuous
construction and regularly timed reproduction, this rule triggers the reproduction of two agents
(types A and B) and the construction of a rod whenever the acting individual perceives a
construction template.

In particular, in a series of SG breeding experiments for architectural design, we promote pro-

ductivity, diversity and collaboration, and we prevent computational outgrowth of the generated

structure. Our detailed evolutionary approach to automatic SG evolution is presented in [345].

In order to reward productivity, the SG constructions are compared with (simple) pre-defined

structures. More specifically, construction elements built inside a pre-defined cubic shape con-

tribute positively to an SG’s fitness, whereas constructions outside the cube decrease it. This

is similar to an approach we used in [378]. Diversity is traced as the total number of expressed

agent genotypes, as well as the number of deployed construction materials or construction

mechanisms. In order to foster collaboration between the SG agents, we observe the numbers

of perceived neighbours averaged over all active agents and over time. Low values of perceived

neighbours imply that no direct interactions are taking place, whereas large values mean that

the agents are trapped within small spaces. Randomly initialized swarm grammar systems can

quickly exhaust the provided computing power: Fast, possibly unconditional sequences of SG

rule applications may result in exponential agent reproduction. Temporarily, such explosions of

activity could be beneficial, for example in designs that produce large numbers of ramifications.

In the long run, however, such an overwhelming demand on computing requirements has to be

avoided. As a simple means to prevent prohibitive outgrowth, yet allowing for temporary leaps

of activity, we set a time limit for the computation of one specimen. Thus, we filter ine�cient

SGs during the evolutionary experiments.
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Three examples of architectural SG models are displayed in Figure 5.12. The flowing and or-

ganic shapes built by the bio-inspired, generative SG representation promise to support the

design e↵orts of architects [348, 379]. Utilizing the extended swarm grammar model to breed

architectural designs is not only interesting from a creative and innovative perspective on aes-

thetics, but it also bears the potential for optimizing architectural designs in respect to eco-

logical and economical aspects. Such ecological criteria could be temperature regulation and

ventilation [380], adaptation of building structures to the surrounding landscape, utilization

of sun exposed structures for electric power generation, and other evolvable and measurable

features [381].

(a) (b) (c)

Figure 5.12: The displayed architectures are the result of automated evolutionary computation
processes. They emphasize the dynamics of the swarm-driven construction process.

Driving Evolution with EvoShelf

In order to further the design and the analysis of evolutionary design, we have developed

EvoShelf [382], a reliable storage/retrieval system for computational evolutionary experiments

and a fast browser for genotype and phenotype visualization and evaluation (Figure 5.13).

Through EvoShelf we have been able to discover that our preliminary breeding experiments
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(section 5.3.3) tend to produce over-fitting SG populations and predominantly promote the

variety of deployed construction elements.

Figure 5.13: We were able to improve our architectural SG experiments by means of our
management and analysis software EvoShelf.

Figure 5.14(a) depicts a corresponding, representative FitnessRiver plot that was created by

EvoShelf. Our FitnessRiver visualization method stacks the fitness values of individuals on top

of each other. The fitness of an individual is proportional to the width of its current. Di↵erent

colours are used to distinguish between successive individuals. Discontinuing currents indicate

the removal of an individual from the evolutionary process. In the FitnessRiver visualization

the x-axis represents the sequence of generations. The shown plot exposes stagnating and fluc-

tuating fitness development after about 100 generations. A bias towards specific construction

materials deployed by the SG specimens could be identified in star plots representing pheno-

typic features as seen in the corners of the SG visualizations in Figure 5.14(b). Based on these

investigations we are able to adjust our fitness functions and the configuration of our breeding

experiments [382].

5.3.4 A Streamlined, Accessible Swarm Simulation Framework

Rule-based swarm systems seem to be a good fit to capture biological models [304, 383, 289, 384].

However, there are several hurdles that make it hard to deploy swarm models in fields outside
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Figure 5.14: EvoShelf provides the user with quick visualization methods for global fitness
trends and local comparisons, as in (a) the FitnessRiver plot and (b) star plots of the specimens’
features, respectively.

of computer science:

1. The predicates and actions that drive the simulations—e.g. the detection of a chemical

signal or the deposition of a particle—depend on the modelling domains and usually have

to be re-implemented for di↵erent experiments. Still, many of these operations can be

abstracted, parametrically adjusted and reused in di↵erent contexts. The integration of

these operations into a rule-based formalism also makes it possible to utilize functionality

from various computational engines such as physics engines or general di↵erential equation

solvers within a single modelling framework.

2. Depending on the degree of specificity of a rule’s condition and its associated actions,

a theoretically simple interaction can result in an over-complicated representation. A

graphical description of the predicates and the associated actions can amend this issue.

3. As swarm simulations often exhibit complex behaviours, little details—for example the

order of execution and the discretization steps in a simulation—can greatly influence the

outcome. Therefore, we think it is crucial to design models based on a unified algorithmic

scheme.

We have devised swarm graph grammars (SGGs) to alleviate some of the challenges discussed

above [346]. SGGs provide a graphical, rule-based description language to specify swarm agents
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and a generalized algorithmic framework for the simulation of complex systems. Fundamental

operations such as the creation or deletion of programmatic objects, as provided by formal

grammars, are part of the SGG syntax. Through SGGs we can capture (metabolic) functions

at multiple biological scales. We can capture processes of secretion and di↵usion [301] as well

as consumption/removal and production/construction [385]. As a consequence of the graph-

based syntax, SGGs capture the simulation state in a global graph at each computational step.

Thereby, the continuous re-shaping of an interaction topology of a dynamic system is traced and

interdependencies that emerge over the course of a simulation can be represented graphically.

SGG Rule Description

An SGG agent’s behaviour is described by a set of rules (Figure 5.15). Each rule tests a set of

predicates (solid edges on the left-hand side) and executes a set of actions (dashed edges on the

right-hand side) in respect to the acting agent itself (reference node) or other agents. Nodes

represent individual agents or sets of agents. In Figure 5.15, the acting agent is displayed

as an orange node with a black border. Other agents or agent groups are depicted as grey

nodes. The application of the rule is associated with a frequency and a probability. Sets of

predicates can attempt to identify an arbitrary number of agents. The relative location, i.e.

the two-dimensional coordinates, of the node on the left-hand side of the rule is matched with

its appearance on the right-hand side of the rule. If a node does not reappear on the right-hand

side, it implies that its corresponding agent has been removed. If a node appears at a location

that is unoccupied on the left-hand side, a new node is created. Figure 5.15 shows an example

rule. This rule is applied with a probability of p = 0.3 at every fourth time step (�t = 4) of

the agent simulation. One (arbitrarily chosen) node that fulfills predicateX and predicateY is

a↵ected by actionJ and actionK. Also note that a new node is created and is initialized, for

which no reference had existed before. In case there are at least 6 nodes that fulfill predicateZ,

they will all be removed.

Swarm-based Embryogeny & Morphological Development

Swarm graph grammars enable us to closely collaborate with researchers from other disciplines

such as architecture, biology or medical sciences. Following the footsteps of previous works in
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predicateX

predicate Z
(>6)

p = 0.3
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predicateX
actionJ

actionK

initialize

Figure 5.15: An SGG rule that queries the reference node itself (orange), other individuals
(grey) and sets of interaction candidates. The consequence of the rule defines the interactions,
such as deletion of nodes and initialization of a new node.

artificial embryogeny and morphogenetic engineering [386, 387, 388, 389, 390], we have begun to

investigate simulations of biological developmental processes. In a series of (at this point naive)

experiments we integrated high-level SGG agent behaviours (maturation and proliferation) with

physical mechanics (collision and impulse resolution) (Figure 5.16). Tissue cells (blue: not

mature; red: mature) within the vicinity of a signalling molecule (green) start proliferating.

Collision resolution through an embedded physics engine allows the cells to assemble2. The

emerging protuberance is slanted to the right in accordance with the initial distribution of

signalling molecules.

Initially, we were surprised to see that the protuberance in Figure 5.16 turned out symmetrical,

despite its one-sided development. We speculated that this due to a lack of simulated cell

polarization. However, after a series of systematic simulations, we found out that the e↵ects

of polarization would, in combination with proliferation, still be overturned by the physics

interactions and again result in spherically distributed, aggregated cells (Figure 5.17).

Using this same agent-based approach, we have begun tracing embryogenic developments in

mice. Volumetric embryo data provides a basis to populate initial tissue layers with cells (Figure

5.18). Basic intra- and inter-cellular interactions will then dictate the shaping of existing and

the creation of new tissue layers as shown in the mesh-deformation in Figure 5.19. Here sentient

swarm agents play the role of vertices on a graphical surface. In this context, dynamic mesh

generation and manipulation could become part of the agents’ sets of possible actions [391].

2In the given experiment we rely on the Bullet physics engine, http://bulletphysics.org
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t = 177 t = 385 t = 695

1
t = 1287 t = 1754 typical interaction graph

(here for t = 500)

Figure 5.16: The proliferation of mature cells (blue: premature; red: mature) is dependent on
the proximity to growth factors (green). At any time of the simulation, large numbers of agents
are informed by growth factors leading to typically dense but homogeneous graphs that reflect
their interactions.

(a) (b) (c)

(d) (e) (f)

Figure 5.17: (a)-(c) show the same proliferation process as in Figure 5.16 but with only one
initial cell ( growth factors are illustrated as black cubes); (d)-(e) show two simultaneously
growing protuberances, whereas the cells on the right-hand side obtain a polarization aligned
towards the polarization signal to the right (black box).
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(a) (b) (c) (d)

Figure 5.18: (a) We start with a volumetric scan of a mouse embryo, (b) zoom into the region
of interest and (c)-(d) populate it with swarm agents.

(a) (b) (c)

Figure 5.19: Swarm agents occupy the vertices of a three-dimensional surface which is deformed
based on their interactions and movements.

5.4 Summary and Conclusion

Inspired by the construction abilities of social insects, we started investigations into virtual con-

structive swarms [343]. We designed swarm grammars (SGs) as a computational developmental

representation that combines the ideas of artificial swarm simulations3 with the compositional

regulation expressed by formal grammars [339]. L-systems are a prominent approach to trans-

late formal grammars (rewrite rules) into the realm of developmental models [392] (section

3Artificial swarms can be considered a special case of agent-based modelling with a focus on large numbers
of locally interacting individuals and the potential of emergent phenomena which cannot be inferred from the
individuals’ abilities.
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5.3). SGs allow for completely unrestrained interaction topologies and provide a simple way to

integrate interactions beyond population control and fixed local neighbourhood relationships,

which represents an expansion from the more constrained L-systems.

In an iterative process of unification and extension of the initial swarm grammar representation,

we first incorporated a complete swarm grammar genotype into each swarm agent (section

5.3.2), then started describing its behaviour as a set of perception-reaction rules (section 5.3.3).

The original idea of using grammatical production to determine the composition of the swarm

population became part of a more generic agent-based representation [54, 55]. To even further

the modelling capacity of swarm-based simulations, we designed swarm graph grammars (SGGs)

as a means to graphically represent swarm agent interactions and to explicitly model inter-agent

relationships that might influence the dynamics of the simulations (section 5.3.4). Swarm graph

grammars provide a modelling language that can be used for interdisciplinary investigations.

In a collaborative project, we have begun tracing complex developmental processes in mice

(section 5.3.4).

An expanded degree of freedom in SG representations required systematic exploration of con-

figuration spaces. We addressed this challenge by means of computational evolution [343, 344,

345]. In particular, we relied on interactive evolution to explore structural spaces (section

5.3.1) that inspired artistic works [347, 349] (section 5.3.2). We furthered this approach by the

possibility to breed large swarm grammar ecologies in virtual spaces (sections 5.3.2 and 5.3.2).

We promoted structural complexity by considering the frequency and diversity of interaction

processes among swarm agents in order to generate interesting architectural designs (section

5.3.3). More systematic investigations in accordance with scalable complexity measures as out-

lined in section 5.2.2 might yield a better performance in the context of breeding innovative

designs.

With the evolution and exploration of swarm grammars, we have been building methodologies

and toolkits that support modelling and simulation of developmental systems in a multitude

of domains. Evolutionary computation techniques enable us to find swarm system configura-

tions to trace more or less desired or innovative outcomes for artistic or scientific simulations.

However, we are aware that there are several major obstacles to be addressed before our method-

ologies can become instrumental for broad application. Currently, we focus on two issues. First,

we attempt to reduce the computational complexity that inevitably arises from o↵ering a very
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generous and expressive representation [9]. Second, we are constantly engaged in improving

the usability and accessibility of our modelling representation itself.



Chapter 6

A Trans-Disciplinary Program for

Biomimetic Computing and

Architectural Design

In this article, we present the conceptual foundation and selected studio works of two iterations

of our trans-disciplinary university course program that integrates biomimetic computing and

architectural design for graduate students in Architecture. In particular, we first present the

motivation behind and the implementation details of a basic framework for self-organizing multi-

agent computer simulations. Second, we highlight its conceptual presentation to the students

as well as its appropriation by the students through examples of the students programmatic

and material implementations in architectural design projects.

Sebastian von Mammen, Joshua M. Taron: A Trans-Disciplinary Program for

Biomimetic Computing and Architectural Design. ITcon: Special Issue CAAD and

Innovation 17 (2012), pp. 239–257.

6.1 Introduction

Multi-agent systems promote modeling of complex processes by researchers and designers with-

out the need for a profound background in Mathematics. Conceptual models can be directly

translated into programming code and the consequences of a previously theorized model can

129
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visually unfold, undergo rigorous analysis, and experience iterative improvement. Agent-based

modeling also empowers designers to apply a paradigm of self-organizing systems: swarms of re-

active software agents engaging in complex interactions, potentially even reproducing construc-

tive processes. Experiencing and investigating complex systems in nature is another important

aspect that promotes the outlined approach to design. Developmental processes in organisms,

evolution, self-organizing formations in cell populations or animal societies all serve as an in-

valuable source for inspiration and for comprehending the ways decentralized, self-organizing,

emergent multi-agent models can carry fruits for research and design.

In this article, we briefly stress our approach to teaching and training the ideas of agent-based

modeling and related topics around complex biological systems. We will then present some of

the programmatic and material project works implemented by the students over the course of

two iterations of our program. In order to serve our trans-disciplinary program to the students,

we have established a course setup between Computer Science and Architecture. A computer

science course on biomimetic computation provides the theoretical foundation and program-

ming know-how for developing agent-based software simulations with a focus on developmental,

generative, and interactive processes. Architecture students subsequently or concurrently en-

roll in an Architecture research studio in which they have the opportunity to apply and evolve

their agent-based models developed in the Computer Science course. An inspiring feedback

cycle emerges from the trans-disciplinary, theoretically founded and practically applied tandem

of project-driven courses.

The contents and the coursework are closely attuned to maximize the opportunity for mutual

synergetic fertilization of skills and ideas. In the Computer Science course, students are first

familiarized with basic concepts of computational processes and algorithms using the Processing

programming environment1. Units on coding basics culminate in live programming demos

that apply the gathered knowledge about basic data structures and process flow. Simple yet

colorful simulation examples are crafted from scratch in front of the class, thoroughly discussed

and made available online for future reference2. Subsequent lecture units present biological

examples of concepts like developmental growth, self-organization and evolutionary processes.

Corresponding programming codes are presented in class. Finally, students projects commence,

maturing from the initial proposals over prototype implementations into original architectural

1
http://processing.org/

2
http://www.vonmammen.org/biocaad2011/material/

http://processing.org/
http://www.vonmammen.org/biocaad2011/material/
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design works (supported through the Architecture research studio).

The Architecture research studio component of the endeavor provides an outlet through which

these computational processes can be tested at a variety of architectural scales and formations.

By focusing on complex processes in heterogeneous urban environments, multi-agent systems

serve as both a tool for mapping cities as well as for the production of architectural design tech-

niques. In our case, students are assigned a partially completed skyscraper in downtown Calgary

as their site with the task of intervening in the typical procedural construction/assembly pro-

cesses necessary to complete the tower. The exercise challenges students to use agent-based

models to graft into an already ongoing procedural process thereby augmenting its formal, vi-

sual and programmatic performance. The results of the studio are series of new tower iterations

using agent-based techniques developed and supported through the Computer Science course.

These agent-based designs provide the material results of the trans-disciplinary exercise, which

are evaluated for the purposes of improving the next iteration of the experiment. Methods

are discussed that might allow students to improve upon previous years achievements and thus

increase the intensity and intelligence of the models themselves over the course of time.

6.2 Programming Nature

Computation happens through manipulating data. Traditionally, sequences of instructions

that determine how certain data are manipulated are subsumed under high-level commands,

generally referred to as procedures, functions, macros, or methods. Methods can be associated

with specific data objects that combine various kinds of information, e.g. symbolic strings,

numeric data, or other data objects. A repeatedly occurring example would be a Person object,

for instance person1 with the attributes name = Susan, age = 32 and gender = female. The

execution of a method in respect to a Person object could, for instance, update Susans age to

33.

Similar to subsuming instruction sequences, objects and their associated methods can be inher-

ited by other object classes. An Employee class, for example, could expand the attributes and

methods of the Person object class. This object-oriented programming approach represents the

state-of-the-art programming paradigm in software engineering. It is of great value because the
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programmer can immediately understand and work with complex code objects and use them

for creating his own software. A comprehensive introduction to object-oriented programming

is provided by [393].

6.2.1 Agent-Based Programming

Agent-based programming is an extension of the object-oriented approach. It turns passive

data objects into active agents that act in accordance with their behavior, their situation and

their available data[53]. One speaks of Multi-Agent Systems (MAS), if there are multiple agents

at work. The programmer endows the agents with behaviors and properties in such a way that

they work e�ciently together and accomplish computationally challenging tasks. Potential

benefits of MAS can be high robustness as failures in parts of the system can be compensated

by intact agents or high e�ciency as tasks can be performed in parallel and be assigned with

respect to the involved agents specializations.

MAS lend themselves naturally for designing biomimetic computational models, in which sys-

tems of molecules, cells, organs, organisms, or societies are retraced. Individuals in these

systems act based on their own agenda and contribute to the emergence of high-level processes

or designs [230]. The structural properties and the behaviors of living organisms have evolved

to yield streamlined, adaptive metabolic processes to occupy and exploit ecological niches. The

agent-based modeling approach allows the designer to directly map physiological properties and

biological behaviors to computational representations. The only limitations are the knowledge

and creativity of the designer on the one hand, and computational power on the other hand.

6.2.2 Swarms

MAS can be designed in many ways. One can, for instance, implement a centralized controller

agent that oversees the ongoing processes and concerts the activities of the remaining agents

as it sees fit. Inspired by biological systems such as social insect societies, one can alternatively

attempt to configure the agents in such a way that a centralized control is not required. A system

of such decentralized agents brings a number of advantages: (1) It is generally more robust

against failure as there is no crucial, central part that can go missing. (2) The computational
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cost for coordinating the agents is reduced by the agents making locally informed decisions. (3)

If the task at hand can be divided into independent subtasks, they can be accomplished faster

as there are no holdups. Besides such computationally intriguing properties of decentralized

systems, there are other aspects that reach even further. For instance, they support the idea

of simulating biological self-organization, where a system can reach self-maintaining states

independent of its initial configuration [337]. In general, one can say that a decentralized

system is a system whose agents can act freely, whereas any kind of control infrastructure

introduces varying degrees of limitations in respect to the possible interaction processes. Of

course, depending on the system, a rigid control infrastructure might actually be vital, like the

coordination of our motor-sensory activity through the central nervous system. Along these

lines, we would like to underline that control infrastructures are the results of self-organizing

processes themselves. Therefore, decentralized MAS, or swarms, seem to be the least biased,

most direct, and thus, most profound approach to computational modeling.

6.2.3 Development

Ultimately, living organisms are biochemical structures that drive their own development, main-

tenance, and reproduction. These seemingly distinct objectives can all be reduced to systematic

metabolic processes, that is the construction and destruction of products ranging from simple

molecules to large molecular chains to cells and complex tissues. From this perspective, pro-

cesses describe the flow of state changes, whereas structures refer to materializations that persist

for a perceivably long period of time. Even this careful attempt to distinguish processes from

structures emphasizes the role of the observer and it forces us to accept that structure and

process are two closely interwoven aspects of life.

Computational swarms can retrace developmental processes, if their interactions yield persistent

structures. Swarm agents can create structures in numerous ways. They can, for instance,

become part of a larger structure like simulated molecules in Artificial Chemistries [394]. They

can deposit building blocks when building their nests like wasps [395], or hollow out tunnels

and chambers like ants [377].

Due to the swarm agents degrees of freedom, it is a challenge to assign them behaviors and

properties that make them interact in a productive, coordinated fashion [229]. The structures
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built by a swarm, however, provide meaningful evidence of the swarms productivity [343], which

can serve to find swarm configurations that yield desirable designs, for instance by means of

evolutionary computation [345].

6.3 Hands-On Code

We can only assume that a small group of students has been exposed to programming or 3D

modeling before enrolling in our trans-disciplinary program. As a result, we have to guide

them through the very first steps of a programming curriculum to arrive at the point where

they are empowered to read and manipulate programming code or to be motivated to design

and implement programs from scratch.

Visual programming environments like Grasshopper/Rhino, Quartz Composer, or Max/MSP

provide high-level interfaces that make it easy to compose intriguing programs by hiding im-

plementation details that are usually unimportant for the designer. These environments can

o↵er simple interfaces because they constrain the way designers think, i.e. by forcing them to

follow a functional programming paradigm.

Therefore, in addition to the advantages of these visual development environments, we teach

the students in Processing [143], an environment that empowers them with the expressiveness

of the established, object-oriented Java programming language. Understanding programming

in terms of a generic programming language at the level of algorithmic instruction sequences

and memory manipulation allows one to naturally understand other languages and high-level

interfaces as well. Furthermore, it enables the programmer to break out of an imposed pro-

gramming paradigm, and in the case of our trans-disciplinary discourse, create the programming

infrastructure for agent-based models and simulations.

6.3.1 Surface as Architectural and Mathematical Territory

Architectural form serves as a common territory where both visual and agent-based program-

ming techniques can be deployed. While students are being introduced to algorithmic ap-

proaches in the Computer Science course, the Architecture studio runs through a series of 3D
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modeling exercises enabling students to tackle architectural problems of scale, massing and

circulation while allowing students to become familiar with non-linear geometric relationships

within those visual environments such as points, curves, surfaces and manifold spaces (relying

on a NURBS geometry representation). The results are designed not just for producing spaces

for human inhabitation, but more so for the purpose of defining explicit mathematical territories

for the students yet-to-be-developed biomimetic code to inhabit and further articulate.

The exercises continue to evolve in complexity by employing tactics of object instancing, dupli-

cation and formal reproduction. This is particularly useful in partially previewing problems and

opportunities a↵orded by MAS. Principles of transformation, gradient change and morphologi-

cal part-to-part behaviors in these architectural explorations establish programmatic strategies

and aesthetic sensibilities that influence and inform students Computer Science projects.

6.3.2 Getting Started with Swarm Programming

Processing is widely used in architecture and art [396, 397, 398]. Writing a program, or sketch in

Processing lingo, can be as simple as typing a drawing command such as line(0,0,100,100); into

its editor window and clicking the play button (Fig. 6.1(a)). Comprehensive documentation

and references are accessible through Processings menu. Fig. 6.1(b) shows a simple interactive

Processing sketch that, when started, changes the simulation window size to 170 by 80 pixels,

sets its background color to black (color value: 0) and sets the paint color to white (value:

255). For as long as this sketch is running, a circle of radius 5 will be drawn where the mouse

pointer hovers over the simulation windowresulting in a squiggly line in the given example.

Fig. 6.2 shows a basic swarm-programming infrastructure in Processing code. In its setup()

method, new Agent objects are created. Their locations are set to somewhere on the canvas

(dimensions: width x height). The newly created Agent objects are stored in a list called

swarm. The draw() method iterates through this swarm list, executes each swarm agents act()

method and renders it as a circle on the canvas. In the given example, one agent may react to

all the others, i.e. the whole swarm informs each agents actions. As a result, the swarm list is

used as the interactionCandidates parameter of the agents act() method. Instead of changing

its or its partners state, the agents in the given example only indicate potential interactions by

drawing a line to their potential interaction partners. In the given case, all other agents within
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(a) (b)

Figure 6.1: (a) Processing o↵ers an easy-to-use editor and various predefined drawing commands
such as line(). (b) Code inside the setup() method is executed when the simulation is started.
draw() is executed repeatedly until the simulation is stopped.

a distance of 15 units is considered for interaction.

The example shown in Fig. 6.2 has two purposes. First, it shows how a very generic swarm-

programming infrastructure can be created. Second, it indicates the potential interactions

by drawing lines between subsets of agents. Extensions to the Agent class in respect to its

attributes and its act() method infuse the model with meaning. The designer/programmer

has to decide what the agents represent, e.g. construction modules, inhabitants, or physical

currents, what their relationships are, which control instances and constraints should be applied,

and how emerging processes and structures inform each other.

6.4 Explorations of Biomimetic Design: Iteration 1 (2010)

The students in our program are asked to develop a sense for dynamic swarm systems and

explore how they can impact the creation of architecture. In this section, we identify continuing

trends across two years of studios that have emerged through the application of biomimetic code.
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Figure 6.2: The complete Processing code of a basic swarm-programming infrastructure. The
draw() method executes the act() method of a list of Agent objects.

6.4.1 Sentient Surfaces

Julie Brache and Michael Scantland worked on an extension of the previous programming

example. Agents serve as the vertices of a mesh and their neighbor relations translate into the

mesh topology. Movements of agents can thus dynamically reconfigure the surface. Fig. 6.3

shows a basic setup of an according simulation of sentient surfaces. Fig. 6.4 depicts exploration

states of the emerging mesh dynamics.

Scantland and Braches 2010 studio project paralleled the sentient surface investigation through
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(a) (b) (c)

Figure 6.3: In sentient surfaces, agents serve as mesh vertices and their movements reconfigure
the structures. (a) A single agent drags its neighbors out of the mesh. (b) Conceptual illustra-
tion of perception thresholds between two sentient surfaces. (c) Attracting and repelling forces
among the agents result in rough surface configurations.

the deployment of a nodal network distributed throughout the tower site. While addressing a

di↵erent frequency and scale of modulation in the studio project, displacement of interior spaces

and replacement of exterior structure formed an integrated relationship between di↵erential

programs. Fig. 6.5(a) diagrams the responsive relationship between exterior structure, interior

space and building envelope generated by grafting the two systems together. Fig. 6.5(b)

illustrates the exterior view of the tower as the nodal network weaves through the building.

6.4.2 Creating Space through Diversity

Ryan Palibroda approached the organization of land occupation from a 2D perspective. Agents

keep pushing each other in accordance with their preferences until a steady state is reached

(Fig. 6.6).

Ryan Trefz also experimented with di↵erent agent types (Fig. 6.7). In addition to repelling

forces, Trefz relied on the whole array of boid urges to inform his agents flight: alignment,

cohesion, separation [399]. Di↵erently configured agents can be distinguished through size and

hue.

Trefz and Palibroda collaborated in studio to produce a tower whereby the building exterior

operated like a solar landscape. While the exterior borrowed tactics from Palibrodas displaced

fields (Fig. 6.6(a)), interior spaces were formed by tracing flocking positions into structural

networks (Fig. 6.8(b)).
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(a) (b)

Figure 6.4: In sentient surfaces, agents serve as mesh vertices and their movements reconfigure
the structures. (a) A single agent drags its neighbors out of the mesh. (b) Conceptual illustra-
tion of perception thresholds between two sentient surfaces. (c) Attracting and repelling forces
among the agents result in rough surface configurations.

6.4.3 Carving Structures

Chris Vander Hoek explored subtractive generation of architectural spaces. In his project,

commuting swarms (Fig. 6.10(a)) carve out cubic volumes that recursively decompose into

eight smaller cubes on collision with a swarm individual (Fig. 6.9).

In his studio project, he used the same particle swarm to generate a 3D voronoi extrusion from

the building base in order to extend the interiority of the tower into the adjacent plaza (Fig.

10(a)). Physical explorations focused on fabrication and assembly techniques that subtract

from adjacent spaces.

6.4.4 Procreating Particles

Jonathan Choo and Fadilah Hamid applied their knowledge of agent-based modeling in a sim-

ulation written in MEL, the embedded scripting language of the Maya rendering software. A

predefined space is populated with agents (Fig. 6.11(a)) that attract and repel each other (Fig.

6.11(b)) and procreate on collision. The inter-agent relations translate into a smooth surface

with hollow spaces (Fig. 6.11(c) and Fig. 6.12).
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(a) (b)

Figure 6.5: (a) Grafting Strategy (b) Exterior Perspective.

(a) (b)

Figure 6.6: (a) Agents of a specific type form clusters as they push agents of other types away.
(b) Opposing forces between di↵erent agent types result in organically shaped high-density
areas.

6.5 Explorations of Biomimetic Design: Iteration 2 (2012)

A second set of architectural research studio explorations (Integrative Intelligence) took place

in 2012 that continued the original line of biomimetic investigations. More precisely, the

studio sought to find new application for agent-based processes within the historic Pruitt-

Igoe site which were submitted (mid-term) to the Pruitt-Igoe Now competition (http://www.

pruittigoenow.org/). The selection of work included in this section demonstrates the contin-

uing developments of the biomimetic investigations initiated between the authors, particularly

as they relate to material experimentation that were not tackled in 2010s architectural research

studio.

http://www.pruittigoenow.org/
http://www.pruittigoenow.org/
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(a) (b)

Figure 6.7: Cluttering and clustering flocking formations to inform a dynamic architecture
inspired by Craig Reynolds boids (1987) and Nicholas Reeves Mascarillons (2005).

6.5.1 Decay Swarms

Jodi James advances the simulation and projection of sentient surfaces into her 2012 studio

project whereby growth and decay are mobilized against one another across building surfaces

both internal and external (Fig. 6.13). Using a combination of swarming and grafting def-

initions previously developed by Taron, James reprogrammed the material, structural and

programmatic organization of a large-scaled historical housing project, transforming it into a

self-contained, self-regulating society (Figs. 6.14-6.16). Through material experiments, James

was able to combine CNC milled high density foam with the precise application of acetone to

produce the kind of surface e↵ects produced through her computational simulations (Fig. 6.17).

These tests when taken further, were able to articulate large territories of decayed built space

(Fig. 6.18). James project allows for innovative new ways to not only make new buildings but

also new methods for modifying existing structures. This is becoming an increasingly impor-

tant territory for research as the reuse of existing buildings o↵ers distinct advantages when it

comes to sustainability and life-cycle assessment.

6.5.2 Spherical Aggregations

Erin Faulkner de Gordillos project focuses on particle simulations that produce forms similar to

Choo and Hamids Procreating Particles (Figs. 6.11 and 6.12) but goes further to emphasize the

possibility for their material mass production. The aesthetic similarities to Choo and Hamid

are most evident in the general project imaging (Fig. 6.19).
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(a) (b)

Figure 6.8: (a) Hotspots embedded within the building facade operate as attractors for (b)
interior conditions that trace the position of flocking particles through space.

However, investigations moved very quickly toward ways in which spherical particles could

aggregate and intersect materially such that the spatial geometry could be achieved. Toward

this end, de Gordillo gravitated toward flat stock and laser cutting in order to run tests. These

tests were initiated using a 2-dimensional logic that would embed 3-dimensional connection

strategies in order to form spatial conditions (Fig. 6.20). This project lends itself particularly

well to stress the transition from local, micro-interactions toward macro-assemblies.

Tests were procedurally tracked as the individual assembly grew and aggregated (Figs. 21 and

22). The complex, emergent form tasks the designer with extensive explorations of generated

perspectives. De Gordillos work, while interesting in its own right, is perhaps most interesting

in the fact that the parts themselves contain the logic for assembly without specifying exactly
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(a) (b) (c)

Figure 6.9: (a,b) Commuting swarms carve out cubic volumes. Upon collision between a
swarm individual and a volume, it recursively decomposes into eight cubes until it completely
disappears. (c) Future city optimized for mid-air tra�c flow.

what form may come. This may provide the best insight into how future agent-based systems

will be assembled: absent a dimensioned building envelope, but rather a series of parts that

can be organized and reorganized to yield [re]configurable spaces, programs and form.

6.6 Program Evaluation and Future Work

After two iterations of our trans-disciplinary program, we have been able to identify and correct

some of its weaknesses and exploit some its strengths. Success manifested through the combi-

nation of algorithmic and biological foundations o↵ered through the Computer Science course

while the Architecture research studio provided a space for exploration and application of those

techniques in the context of the built environment. Problems developed in the studio were in

turn framed as means for evolving the projects in the Computer Science course. We found that

enthusiasm was renewed on both fronts with the constant unfolding of new problems, innovative

solutions and range of applications.

In the first iteration of the program, the Computer Science projects did su↵er from starting

only after a number of weeks of introductory coding exercises were completed. As such, the

students projects did not have the full term to evolve and develop. We amended this issue

in the second iteration by employing instructor-generated podcasts of basic lessons (http:

//www.youtube.com/user/svonmammen). At the same time, coding basics were conceptually

taught in class; however, programming training was provided on-demand in addition to the

http://www.youtube.com/user/svonmammen
http://www.youtube.com/user/svonmammen
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(a) (b)

Figure 6.10: (a) Aerial perspective (b) Sectional study model carves away from the subterranean
parking lot below the site.

lectures in order to free up time and let the student projects start early in the term. Obliging

each student to pursue his own project (as opposed to group-projects of two) turned out to be

another major improvement in terms of personal motivation and creativity.

The Architecture research studio did provide an appropriate moment in the curriculum to

engage in computational biomimicry (in the last term of a six-term graduate program) given a

developed knowledge during their first two and a half years of graduate education. However,

the Computer Science course is seen as introductory and would certainly serve as a valuable

skill to have earlier in a graduate curriculum (Architecture, Computer Science or otherwise). A

looser but perhaps more profound connection might exist between the Computer Science course

and an Architecture studio positioned earlier in a graduate program, thus giving students more

opportunities to experiment with and develop their coding skills as they continue through

school.

We view the premise of decentralized control in both Computer Science and Architecture as
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(a) (b) (c)

Figure 6.11: (a) Slowly a predefined volume is populated with agents (represented as spheres).
(b) Attracting agents are colored in bright red. (c) A smooth mesh encloses the interacting
agents.

(a) (b)

Figure 6.12: (a) An architectural site is redefined by interacting particles. (b) The interior
space of the resulting space.

fundamental to the advancement of our own research and in both disciplines at large. By

producing a pedagogical framework whereby swarms, natural systems and Architecture oper-

ate within an interchangeable space, each can inform the others in unique and useful ways;

envisioning biomimetic code as Architecture, Architecture as nature, and nature as codified

milieu. While the courses reinforce one another by structuring the exchange of information

between one another, less resolved are the structures that might produce continuity and evo-

lution from one year to the next. By archiving code packages developed in previous course

iterations, incoming students have shown to carry on and develop those definitions further,

hybridize multiple definitions together or if nothing is attractive to them, start something from

scratch, thus broadening the gene pool. The code developed in a given term has the chance to

go on living after a course iteration has ended which stands metaphorically for our approach
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Figure 6.13: Swarm-generated growth and decay model.

to trans-disciplinary teaching and research.

Another line of continuation might make a selection of previously developed definitions avail-

able to an Architecture research studio with the charge that they design with/make use of them

in an architectural capacity. This is already a model in use whereby swarm code developed by

Taron is released to Architecture students for use as a generative design tool. Interoperability

between agent-based models and analytical software could also prove useful in fostering emer-

gent performative capabilities of these models whereby swarms would generate fitness values

through evolutionary feedback loops. von Mammen has been part of another trans-disciplinary

project for the past three years to develop according modelling languages and computational

frameworks (http://lindsayvirtualhuman.org/). This looks to be a promising trajectory

as analytical tools such as finite element analysis, computational fluid dynamics and energy

performance software have come into the mainstream of architectural design process.

http://lindsayvirtualhuman.org/
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Figure 6.14: Parametric Grafting Diagram (internal).

Figure 6.15: Axonometric Program Diagram.



148 Chapter 6. Biomimetic Computing and Architectural Design

Figure 6.16: Sectional Program Diagram.

Figure 6.17: Dense Foam Decay Tests.
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Figure 6.18: Project Model.
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Figure 6.19: Project Render.

Figure 6.20: Part-to-whole Assembly Diagram.
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Figure 6.21: Aggregate Assembly Sequence.

Figure 6.22: Final Model Image.



Chapter 7

Artistic Exploration of the Worlds of

Digital Developmental Swarms

We present art work that was inspired by a computational model called Swarm Grammars.

Herein, the ‘ liveliness’ of swarms is combined with the generative capabilities of more estab-

lished developmental representations. Three artists followed their very individual approaches

to explore the creativity and dynamics of Swarm Grammar structures. One artist chose to

interactively breed structures to compose virtual spaces. Work by the second artist explores

the movement and construction dynamics of the interactive swarms. The third artist trans-

lated developmental processes of Swarm Grammars into interactions of paint particles driven by

friction and gravity. Swarm structures transcend from virtuality to sculptural manifestations.

Sebastian von Mammen, Joyce Wong, Thomas Wissmeier, Christian Jacob: Artistic

Exploration of the Worlds of Digital Developmental Swarms, LEONARDO 44 (2011), 513.

7.1 Introduction

With an open mind and open eyes, we discover breathtaking forms and colors, textures and

shapes in nature. The ridged desert sands, the reflection of the sun in the sea, or serene

alpine landscapes have served as motifs for countless paintings, pictures and movies. Nature’s

glamorous constituents of organic origin, like butterflies and shells, have been collected for their

beauty over centuries. Through algorithms that retrace the processes of growth of plants and

152
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other forms of life, digital art has grown far beyond a binary heritage that only suits re-shaping

the reflections of real objects. Nature-inspired processes of growth and development may be

algorithmically implemented simply by repeated substitution of symbols in a string according

to a set of rules. L-Systems, which follow exactly this idea, have been applied to simulate the

growth of cells [400], plants [338], organs [401], and architectural designs [402]. From a larger

perspective, generative processes or developmental models have extended the computational

realms of creation and creativity [403].

Besides the distinction of individual symbols, e.g. A or B, any information about the relations

among the replicating units have to be inferred from the L-Systems’ strings by an external

interpreter. In Swarm Grammars (SGs) complex networks of relationships develop because

SGs combine the developmental aspect of L-Systems with an agent-based modeling approach

[399]. Each symbol is considered an individual that perceives and reacts to stimuli in its

environment while grammatical rules drive its reproduction and construction processes. Thus,

highly dynamic, complex networks of interactions emerge [117].

The SG examples in this article combine the coordination of movement as seen in birds, the

reproduction as modeled in the growth of cell colonies or plants and the indirect communica-

tion through the environment investigated in social insects. These aspects are found in many

natural systems, e.g. chemotaxis, quorum sensing and bio-film aggregation at the cellular level.

Algorithmically, those aspects have mainly been studied independently. We utilize Swarm

Grammars that combine these aspects to create life-like artefacts that resemble organic forms

[343] that capture the dynamics of the construction processes [347].

While artists and computer scientists have explored computational developmental models and

artificial swarms to a large extent (Section 7.2), the exploration of Swarm Grammars has

begun only very recently. Nest constructions by social insects like wasps, ants and termites,

however, already hint at the power of swarm-based developmental models. Details of the

inspiring biological models are provided in Section 7.3. Subsequently, works by three artists are

presented, whose artistic endeavors might be summarized as (1) utilizing Swarm Grammars to

create artificial spaces (Section 7.4), as (2) inspirational manifestations of interaction dynamics

in complex systems (Section 7.5), and as (3) visionary playgrounds for artistic expression, media

and forms (Section 7.6). Finally, in Section 7.7, we briefly recapitulate the highlighted aspects

of the presented art in the context of computational developmental models and provide an
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outlook on possible future work.

7.2 Related Work

Machines help us in performing repetitive tasks. The more powerful the machine, the more

complex the conductible action can be. Analogously, the more powerful a computational rep-

resentation, regarding its expressiveness and abstraction, the more complex the computable

result will be. Multi-cellular organisms are outstandingly complex systems. With L-Systems,

Lindenmayer successfully found a grammatical representation for the growth of clusters of cells

[392]. In retracing the development in natural systems, L-Systems can create natural aesthetics.

Based on L-Systems, and other mathematical methods—including fractals—intriguing sculp-

tures of artificial aesthetics can be evolved [404]. Whole worlds of seemingly living organisms

can be made to grow in virtual spaces [405].

An important aspect of developmental systems is their ability to be evolve. Real creativity

is conjured when computational evolution drives the development of structural and graphical

representations. The necessary selection processes of fit individuals can be performed manu-

ally, by a human ‘breeder’ [406, 407]. Alternatively, automatic evolutionary runs can foster

structural attributes that optimize mathematical fitness measures, e.g. for increasing the de-

sign complexity [369] or to introduce architectural functionality. In an attempt to automatize

the evaluation of generated computer art, human-made works can provide reference points for

assessments. A lot of artistic works have been produced through the combination of computa-

tional evolution and developmental models, see for example Part III in [408]. However, artificial

life methodologies have instilled other important aspects in computer arts. Artificial swarms,

for instance, regularly enthuse public audiences in interactive art installations [409]. Through

the interactions of large numbers of flocking individuals, or boids (see Reynolds [399]), a certain

‘ liveliness’ is communicated. As an underlying principle, each swarm individual (referring to

a single unit of the swarm) has a limited perceptional field that determines its neighborhood.

In Figure 7.1 the field of perception is defined by the viewing distance d and the angle ↵. Fur-

thermore, at each time-step of the simulation, the individual computes its current acceleration

in accordance with its neighbors. As a consequence, the individual changes its position and

its neighborhood configuration, as do the neighboring flock mates. Hence, a feedback loop of
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interactions is triggered that can lead to a variety of flocking behaviors [376].

Figure 7.1: All mates within the conic field of perception of the dark agent are considered its
neighbors. The perception range is determined by a distance d and angle ↵.

Primarily, the flocking dynamics of artificial swarms feed into animations. But the spatio-

temporal interaction network of swarms also supports computational music generation [374].

Furthermore, simply by leaving traces in space, the flocking patterns solidify and their dynamics

can be captured in three-dimensional sculptures. Some of these virtual sculptures have served

as inspirations for traditionally crafted collages and paintings, see von Mammen [347].

7.3 Developmental Creativity of Swarms

When termites build their nests, they do not work from a blueprint of the new construction.

Instead, they follow their instinct and build wherever they see fit. In fact, the construction

activities of social insects are determined by pheromone trails left by other individuals, con-

struction cues in their immediate environment, physical gradients such as heat and humidity,

or by plain chance. Based on this idea, simple sets of probabilistic behavioral rules have led to

constructions similar to those observed with ants and wasps [230].

Swarm Grammars are a computational concept that integrates (1) the power of constructive

swarms with (2) the ability to instantaneously reproduce and (3) the boid flocking paradigm

outlined earlier. Figure 7.2 shows an example of Swarm Grammar (SG) development. Through

Figure 7.2(a) to Figure 7.2(g) SG agents split and leave construction elements along its paths.

With an initial, “ axiomatic” agent, A, reproduction is performed according to the rule-set:

{A ! ABC,B ! A,C ! AA}. In Figure 7.2(a), a construction element has been placed by
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an agent of type A. Already, the first production rule has been executed, leaving three agents

A,B,C, illustrated as the small pyramids, floating on top of the construction. Subsequently, in

Figure 7.2(b) to Figure 7.2(g) the reproduction and construction process continues: Agents B

and C quickly drift apart, loosing most of their internal energy. The loss of energy is reflected in

the shrinking diameter of their constructions. Hence, after another reproduction on each side,

the construction processes stop. Only the initial agent A keeps enough energy for persisting

cycles of reproduction and construction. In the used SG configuration, the loss of energy is

type-dependent and linked to the agents’ movements and replication processes. The rules for

reproduction and di↵erentiation are triggered after a type-dependent interval of simulated steps.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 7.2: Swarm Grammars in Action: (a) Three agents (represented as small pyramids) are
heading upwards after their initialization. (b) The green and brown agents drift apart. Before
they run out of energy they create the spiky construction elements seen in (c). The spikes occur
because the agents’ energy levels are linked to their construction elements’ diameters. In the
meantime, the yellow agent has produced new o↵spring and the construction module created
so far is repeatedly added to the growing structure (d-g).

Di↵erent sculptures emerge, when we change the reproduction rules and the agent properties

(Figure 7.3). This SG configuration can be changed manually, but also by means of com-

putational evolution. Many approaches have been tested for the latter case: (1) Through

interactive evolution an external breeder rates an array of SGs (see [343]). (2) In an immersive

(co-)evolution approach a gardener tinkers with SGs in a virtual space by replenishing their
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energy to further their growth, by inducing mutations, or by crossbreeding selected specimen

[344]. (3) Using automatic evolution a fitness measure is formulated mathematically that serves

to evaluate the construction processes and the emerging structure [345].

(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Evolved Swarm Grammar Samples.
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7.4 Creating Spaces

Stimulated by the architectural capabilities of Swarm Grammars [345], the artist (S.v.M.) com-

bined swarm structures to create surreal, artificial worlds. In about 40 interactive evolutionary

experiments, the artist bred the utilized Swarm Grammar structures, relying on the Mathe-

matica library Evolvica for the evolutionary algorithm [365] and the user interface Inspirica

[376]. The breeding experiments yielded the sets of Swarm Grammar structures displayed in

Figure 7.4(a) and (c). In the corresponding paintings, Figure 7.4(b) and (d), a chameleon and a

bighorn sheep are immersed in complementary artificial environments. According to the order

of appearance, all figures in this article show the computer-generated contents first, followed

by their human-made artistic realizations.

During the evolutionary runs, the artist followed two main objectives. Firstly, robust looking

beams should emerge that form a structural mesh, thus opening vast spaces by their mere

existence. Secondly, fuzziness, continuity and the resemblance to organic forms should warrant

the authenticity of the generated virtual worlds. The color gradients in the backgrounds reflect

the extreme climates of the habitats of the projected animals. They also highlight the sound,

wholesome, fluent structural architecture in Figure 7.4(b) and the liveliness and dynamics

caught in the erratic structures of Figure 7.4(d) with “warm” and “cold” palettes, respectively.

7.5 Abstraction of Dynamics

The smooth, interwoven curves with sporadically grown thorns seen in Figure 5(a) and (b)

emphasize the emergent flocking dynamics of the constructing Swarm Grammar. Figure 7.5(a)

shows a screenshot from the interactive breeding procedure: Several specimens are growing

according to their configuration, independently in isolated spaces. After close inspection, the

external breeder rates the presented Swarm Grammars. Based on the received fitness the in-

dividuals are selected for the next generation of Swarm Grammar simulations. During the

transition from one generation to the next, a certain percentage of selected Swarm Gram-

mars are interbred, to combine some of their characteristics. The so-called mutation operator

introduces small configuration changes to some of the other selected specimens.
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The artist (J.W.) chose the SG structure depicted in Figure 7.5(b) to inspire the real-world

sculpture shown in Figure 7.5(c) and (d). Four glass plates, painted with matching SG graphics,

are connected through bearings that allow to turn them (Figure 7.5(d)).

Through the innovative sculptural design, the dynamics of the Swarm Grammar growth pro-

cesses are maintained. The interdependent flocking of the SG agents can be replayed by ro-

tating the glass plates and seeing a great number of alternative structures of the same con-

stituents emerge. The layer-wise mapping of a two-dimensional image resulted in a fully three-

dimensional sculpture, as both the glass plates and the bearings have a significant height (about

0.3 inches). Hence, although the images are flat as on the computer screen, they materialize as

three-dimensional due to the interplay of transparent plates and bearings.

7.6 Models as Basis for Experiments

Publishing about art inherently requires photographs to show the discussed pieces. In the fol-

lowing paragraphs, however, the artist (T.W.) intentionally chose the medium of photography

for a reason. Especially in works that are based on sculptures, presented at the end of this sec-

tion, photography supports the artist’s experimental work with an immense degree of freedom.

As pointed out by the Austrian arts professor Christian Reder [410]:

As a multitude of considerations, pictures, layers, associations, the model is always

a working model at the same time.

This statement is an imperative—to use the model to work with it and to improve on it, instead

of chasing its immediate finalization. In the context of the presented work, a cascade of modeling

indirections has hurried ahead: Biological models that were unified in a computational (meta-

)model of developmental processes. In a second step, unfolding an instance in the computational

model space led to three-dimensional structures in virtual space that served as models for

artistic work. Now, the importance of Reder’s statement lies in the freedom of the artist:

No formal stipulations cross the artistic path. But, if so chosen, insight can be pursued with

intrinsically motivated playfulness regarding perspective and perception. This deems to be even

more important when striving for comprehension of interwoven complex models.
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7.6.1 Translating between Virtual Spaces

The Swarm Grammar sculpture of Figure 7.6(a) is captured in a rather abstract fashion in the

photograph shown in Figure 7.6(b): With monochromatic coloring and extrapolation beyond

the original structure by adding a third column. Like the art pieces presented in Section 7.4, the

photograph accentuates the architectural characteristics of some Swarm Grammar structures.

But even though the stylized elements were reduced in number, the architectural, sculptural

features of the original structure are furthered. The underlying material piece was painted

with varnish on a large wooden panel. It possessed strong contrasts and hard edges that were

smoothened in order to facilitate the engagement in the photograph’s spatial aspects.

The Swarm Grammar structure in Figure 7.7(a) inspired the photograph in Figure 7.7(b). The

photograph is the result of an intricate experimental process: A glass plate was primed on one

side. On the other side varnish was applied with a sponge in a subtle manner. Its palette was

reworked with shades of white and blue. Undesired light reflections were removed that occur

in photographs when working with varnish. The piece reflects the similarity between Swarm

Grammar structures and clouds. Clouds, too, are spatial structures that continuously change.

The same process led from the Swarm Grammar structure in Figure 7.8(a) to the unnamed pho-

tograph displayed in Figure 7.8(b). Rhythmic collisions in the SG sculpture emerged through

the synchronized di↵erentiation into attracting and repelling swarm agents. The resulting

structure motivated a competition between repelling color compounds. Black and white colors

competed for surface space on a 17.3” x 25.2” glass plate. The tournament was performed

by thinning the varnish to flow quickly with gravity. At the same time the compounds kept

enough surface tension to repell each other.

Allowing color particles to find their own paths is very similar to the idea of autonomous Swarm

Grammar agents leaving traces in space. To further this idea, the branching processes that led

to the SG sculpture depicted in Figure 7.9(a) were emulated. A finish with a naturally stronger

texture was used for the photograph shown in Figure 7.9(b). The coarse surface of a sloped

wood panel propelled the color particles to disperse automatically. Moreover, the artist rotated

the piece so that the color ran into di↵erent directions. Thereby, the artist only indirectly

a↵ected the outcome.
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7.6.2 Finding the In-between World

In the works we present in this section, the Swarm Grammar sculptures were used as inspira-

tional starting points for real sculptures. Then, in accordance with Reder’s quote, the artist

diligently chose the photographic configuration that led to the desired outcome.

The newly gained spatiality fully springs to life in the pieces in Figures 7.10(b) and 7.11(b).

The interplay of light and shade creates deep, smooth textures, provoking tactile urges. The

photographs convey organic looks and the fuzziness that we know from natural phenomena.

They look soft and gnarly, like skin, but have their very own unique structures.

Figure 7.10(a) shows a Swarm Grammar structure with a compact, yet spiky core to the right-

hand side and seven thick outgrowing, entangling ramifications. Their regular segmentation

and their pointy ends capture the viewer’s focus. Inspired by this virtual sculpture, the artist

(T.W.) chose wires and tinfoil as construction elements for a corresponding real-world model.

The decision for these materials was made to mimic the compact wrappings and ramifications

of the SG sculpture. Although the original swarm structure is not directly identifiable in the

photograph (Figure 7.10(b)), several analogies can be recognized. (1) The partition of the

aperture: Few light elements on the left-hand side and impenetrable surfaces to the right. (2)

Interwoven o↵shoots to the left and one protruding one in the top-right pane. (3) A rippling

spiral similar to the segmented ramifications in the SG structure. Most importantly, however,

very general, common features stand out. Firstly, the unity and the role of the interwoven

elements. And secondly, the smoothness and the dynamics of the sculpture.

Searching for other suitable materials to simulate Swarm Grammar processes, the artist relied

on paper for the piece presented in Figure 7.11(b). A soft light reflection is introduced through

the material. The swirly twist of the SG agent illustrated in Figure 7.11(a) is directly reproduced

in the sculpture in a manifold way. In this case a craggy, concave surface was devised. The

radial gradients in combination with the fuzziness of the photograph create the impression of

circular motion. The white background of the simulation screenshot was turned into black for

the photograph, spotlighting the sculpture and allowing for an adroit illumination.
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7.7 Summary & Future Work

We briefly outlined the idea of Swarm Grammars as a bio-inspired, computational developmen-

tal model. Seeking ways to explore the originality and novelty of this model, interdisciplinary

work with a group of artists was performed. Several pieces of art inspired by Swarm Grammars

were presented and discussed. We put an emphasis on the process of crafting the respective

piece, its relation to the Swarm Grammar structure and new aspects that emerged because of

the artistic discourse.

In particular, it was shown that rigid Swarm Grammar structures can be interwoven to open up

virtual spaces (Section 7.4). The remarkable organic looks of Swarm Grammar structures create

the impression of artificial but ‘living’ spaces, i.e., artificial inhabited worlds. Work has been

presented that innovates on the transition between two-dimensionally mapped visualization

and the third dimension by means of layering semi-transparent plates (Section 7.5). Dynamics

and complexity of the underlying Swarm Grammar structure were maintained by allowing to

rotate and overlay the painted swarm constructions. Finally, a series of pieces was presented

that furthers the idea of modeling as an integral part of experimenting (Section 7.6). The chain

from biological models to a computational meta-model to a structural instance that serves as

model for artistic work grows once again. The artist used this long chain of modeling to mimic

Swarm Grammar simulations from several perspectives. By means of a high-contrast painting

method on semi-transparent glass plates, abstract features of Swarm Grammar constructions

were captured. As a next step, the self-organizing properties of Swarm Grammar systems

were emulated by repelling color compounds, dispersion through textured surfaces and swift

rotations of the media to direct the flow of color by gravity. Di↵erent materials—wire, tinfoil and

paper—were utilized to devise sculptures that gained soft, organic looks and also maintained

other properties exhibited by the Swarm Grammar constructions.

Interdisciplinary work took place through the collaboration of scientists and artists. We believe

that the discussed pieces are both an enrichment for the world of art and an inspiration to

further the involved models on any level of abstraction—in silico, in vivo, or in-between.

For future work we want to improve on several concepts and approaches. The applied Swarm

Grammar model is still restrictive in many ways: The assortment of construction elements is
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very small and little imaginative—broader selections and more intricate shapes could enhance

the artistic value of the swarm-built structures. Due to the overwhelming number of parameters

that determine a Swarm Grammar construction, the only, currently implemented way to realize

a conception is through computational evolution. Although we believe in the power of this

approach, a working artist expects greater freedom for individual arrangements in many cases.

Therefore, embedding an interactive design tool into the Swarm Grammar simulation framework

would be beneficial.

Regarding new concepts for Swarm Grammar art, we are currently developing mechanisms for

the self-organized assembly of three-dimensional structures, following the idea of autonomous

color particle paintings. In order to do so, the stepwise extension of the particles’ attributes in

tandem with means to a↵ect the particles’ situations and interactions needs to be investigated.

As a starting point, we rely on layering propelled color particles—inspired by some of the

early works by the Canadian artist Gerald Hushlak [411] and the sculpture “Pirouette in Red”

(Figure 7.5) and the photographs seen in Figures 7.8(b) and 7.9(b). A series of photographs

of experimental trials is displayed in Figure 7.12. Although this approach has similarities to

modern 3D plotting devices [412] and feeds on real-world experiments on self-assembly [413],

we believe that the swarm perspective provides a playground for novel ideas.
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(a) (b)

(c) (d)

Figure 7.4: Diptych of the two pieces (a) “camlon” and (c) “bighorn sheep”. Acrylic medium on
canvas, 23” x 38”. Selections of Swarm Grammar structures bred for the diptych are displayed
in (b) and (d), respectively. (S.v.M., 2008)
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(a) (b)

(c) (d)

Figure 7.5: During an interactive evolutionary run (a), the depicted rose-like structure emerged
(b) that inspired the piece: Pirouette in Red. 12” x 12”, mixed media. (c) The sculpture in
its initial position. (d) Bearings allow to rotate the plates into di↵erent configurations. (J.W.,
2008).

(a) (b)

Figure 7.6: (a) “Gate”, photograph, varnish on a wood pannel (22.4” x 39.4”). (b) The inspiring
Swarm Grammar sculpture. (T.W., 2008)
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(a) (b)

Figure 7.7: Experimental processes involving painting with mixed media and reworked pho-
tographs led to (a) the arts piece “Cloud”. It was inspired by the semi-transparent branching
SG structure in (b). (T.W., 2008)
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(a) (b)

Figure 7.8: (a) Black and white color compounds compete for surface space of a glass plate.
As inspiration served the SG structure in (b), built by attracting and repelling swarm agents.
(T.W., 2008)
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(a)

(b)

Figure 7.9: (a) “Blue”: Color particles dispersed through gravity and the coarse texture of a
13.8” x 27.6” wood pannel. (b) The inspirational SG structure. (T.W., 2008)
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(a) (b)

Figure 7.10: (a) Photograph of a sculpture made of wires and tinfoil with dimensions 7.9” x
9.4” x 2.8”. Its inspirational Swarm Grammar structure is shown in (b). (T.W., 2008)

(a) (b)

Figure 7.11: (a) The attempt to form swarms with paper. Inspired by the Swarm Grammar
graphic seen in (b). (T.W., 2008)
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(a) (b) (c)

(d) (e)

Figure 7.12: The displayed series of photographs shows the artistic reproduction of developmen-
tal swarm structures. (a) While color is running down a sloped canvas, a dryer works against
gravity by blowing towards the induced current. (b) The interplay of forces creates branching
structures. (c) New layers of color and plastic foil are introduced into the artificially created
physical world. (d) Complex structural relationships have emerged through the interacting
layers of mixed media. (e) The emergent texture has grown into three dimensions. (S.v.M.,
2009)



Chapter 8

The Digital Aquarist: An Interactive

Ecology Simulator

In this paper, we present an interactive simulation of the ecological cycle in a fish tank. Like

the owner of a real fish tank, the user of the simulation has to balance several vital parameters

of the aquatic system. Next to people interested in the world of aquatics in general, the sim-

ulation especially targets teenagers and aims at increasing their interest in ecosystems, and to

contributing to their understanding of basic ecological principles. We engage the user introduc-

ing various gamification elements, including game-like UI elements, high scores, and a diligently

adjusted reward system that allows for adding new inhabitants to the aquarium. Based on a

user study, we evaluate our concept and layout possible improvements and extensions.

Julian Schikarski, Oliver Meisch, Sarah Edenhofer, Sebastian von Mammen: The

Digital Aquarist: An Interactive Ecology Simulator. In: Proceedings of the European

Conference on Artificial Life 2015 (ECAL), 2015, pp. 389–396.

8.1 Introduction

A profound understanding of complex relationships and processes in ecological systems is an

important factor for making informed, sustainable decisions. Like other empirical sciences,

ecological research heavily relies on digital tools, including those for storage/retrieval, modelling

and analysis ([414]). Educators have been assembling a similar repertoire of digital tools for

171
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teaching ecological systems, whereas computational simulations are especially well suited to

convey their inherent, often fragile complexity ([415]).

In this paper, we present The Digital Aquarist, an interactive simulation of the ecological cycle

in a fish tank. Following the concept of gamification, see e.g. [416, 417], we engage the user

in the simulation by providing easy and rewarding access to the model context, to the model

mechanics and especially to the o↵ered user interactions. Along the same lines, we reduce the

amount of prior knowledge required for a rewarding simulation experience to a bare minimum:

(1) The user can easily explore the interdependencies between di↵erent organisms by himself.

(2) The simulation is staged in a moderately sized fish tank that is often found in private homes

(about 6.5% of households keep fish in the U.S. ([418])).

We further distilled a model complex enough to convey foundational ecological relationships

and the emergent system dynamics, yet simple enough to work for an introductory educational

setting. The interaction possibilities are part of this model simplification: The user is encour-

aged to balance the di↵erent system variables by adding or removing organisms from the fish

tank. Each animal or plant has a certain impact on the ecosystem by either reducing or in-

creasing systemic parameter values, e.g. through breathing. The goal is to keep the schools of

fish healthy over a long period of time while increasing the number of inhabitants, and thus

the heterogeneity and the complexity of the ecosystems’ population.

The remainder of this paper is structured as follows: In the next section, we discuss related

work that influenced this project. Afterward, we present our modelling approach, the use of

gamification elements, the realisation of aesthetic visualisation and the degree of complexity

of the application. Based on our approach, we summarise our accomplishments. Finally, we

outline how the simulation could be extended in the future.

8.2 Related Work

Creating a closed ecological cycle has been attempted by scientists in various projects. Bio-

sphere 2 is a notable representative project of this kind ([419]). It is an architectural and

technological large-scale compound for exploring the interplay between human life and its en-

vironment in a closed ecological system. Biosphere 2 had originally been planned as a self-
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sustaining system. It is used as a research laboratory now, after two attempts to make it work

have failed. The same idea but, at least commercially, more successful is the Ecosphere, an

aquarium whose inhabitants are completely sealed o↵ from any metabolic exchange with the

environment. Only the sun light enters from the outside world and drives growth and trans-

formation processes of the contained plants and animals ([420]). Although it is being disputed

whether the life stock, the shrimp Halocardina Rubra, is surviving rather than slowly starving

to death ([421]).

Despite their minimalistic approaches and their emphasis on the exploration of well-defined

ecological processes, neither Biosphere 2 nor the Ecosphere are apt for learning about and

exploring ecosystem dynamics. One reason is the inaccessibility of the given systems. It is

barely possible to change any of their compositions. Time scales are another reason: It takes

long periods of time for ecological systems to stabilize, rendering it (even more) impractical to

proactively change their settings and to explore their dynamics. For these reasons, providing

interactive simulations of isolated problem domains, or microworlds, has become an important

methodological approach in education and education research ([422, 423]).

While it has been emphasised that idealised model representations (as opposed to concrete

ones) foster the development of generalisable insights ([424]), The Digital Aquarist prioritises

relatable, engaging aesthetic animation over the abstract display of an expectedly vivid, visually

attractive ecosystem. Therefore, di↵erent from a preceding, NetLogo-based 2D aquarium model

([425]), The Digital Aquarist models the aquarium and its inhabitants in an animated three-

dimensional world.

Interactive parameter adjustment of a simulated aquarium has previously been used to study

human learning and planning capacity ([426]). It could show that promoting the free exploration

of a dynamic system allows the user to gain general knowledge, whereas addressing specific tasks

would solely foster specific knowledge. We harness this insight by allowing the users to freely

explore our simulation and to only provide implicit stimuli to maintain the aquarium over time

and with growing heterogeneity. However, as the investigation of intellectual capacities is not

the The Digital Aquarist ’s goal, we also reveal detailed information about the inhabitants of

the simulation and their relationships, if inquired by the user.
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8.3 Methodology

For the sake of accessibility, we focus on simple visuals and avoid overburdening the user with

information which would, very likely, jeopardise the attractiveness of the simulation ([103]).

Instead of promoting formal analytical skills, we make sure to provide visible feedback similar

to real-world experiences, including rampant algae growth upon eutrophication or starving fish.

To keep the user both interested and involved, we built the simulation on the three “pillars

of fun” ([427])— relatedness, competence, and autonomy: (1) Relatedness is established by

the fact that aquaria may exist in households similar to the ones the potential users of the

simulation call their home (see Figure 8.1). The great number of aquaria worldwide renders

it likely that the users are even familiar with the concept of keeping ornamental fish, possibly

also the notion that the aquarist needs to ensure an ecological balance. Finally, we establish a

connection between the user and the simulation by showing that initially the virtual aquarium is

empty and thus that he is responsible for each and every one of its inhabitants. (2) To promote

the competence of the user, he needs to be challenged without giving rise to frustration. This

goal is supported by the facts that The Digital Aquarist builds an ecosystem one step at a time,

that the user always has the power to change its configuration back to a previous, simpler state,

and that he can pro-actively inquire information about the aquarium’s inhabitants and their

relationships. To ease the user into the simulation scenario, he may enter a tutorial level from

the main screen (Figure 8.2) and step through a guided tour shedding light on the impact of

di↵erent species on the ecosystem. (3) The Digital Aquarist provides an inherently autonomous

user experience in that it does not enforce the fulfilment of specific tasks but it lets the user

explore the aquarium dynamics on his own. A high score system is provided that rewards the

user’s achievements but it does not limit the potential of exploration.

8.3.1 The Aquarium Model

In order to ensure an ecological equilibrium, several variables that describe a fish tank’s state

have to be maintained at certain levels. The main parameters are the levels of oxygen, carbon

dioxide, nutrient matter in the seabed, the water volume, and the unoccupied space in the

tank. Other important factors are the hardness of the water, its temperature, and the tank’s

light exposure. To allow the user to focus on key aspects of the ecological cycle, the latter two
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Figure 8.1: The simulated aquarium placed on a cupboard signals an everyday real-life scenario.
The user interface aligned at the border of the view invites the user to join a playful simulation
session.

Figure 8.2: From the main menu of The Digital Aquarist, the user may access the high score
list, enter a tutorial or join an endless explorative simulation session.
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aspects are neglected in our model. In a real aquarium, these factors have to be adjusted by

means of external devices.

The user can balance the aquarium parameters by adding and removing various animals and

plants which all have their own way of interacting with the system. The amount of plants

impacts the amount of nutrient matter in the water and the seabed, the levels of oxygen and

carbon dioxide in the water, as well as the amount of unoccupied space in the tank. Seaweed

breathes in carbon dioxide and breathes out oxygen, takes nutrient matter out of the seabed

and releases small particles of nutrient matter into the water.

Figure 8.3: Overview of our fish tank ecosystem model.

Figure 8.3 provides an overview of the inhabitants of the aquarium and their impact on the

ecosystem. Nutrient matter in the water is consumed by the fish. The snails add the fish’

excrements to the seabed. The seabed in turn serves as a nutritional basis for the seaweed.

Small parts of the seaweed that break away and enrich the water are picked up by the fish

again. The seaweed also produces the oxygen snails and fish breathe and absorbs the carbon

dioxide they produce. This cycle can be disrupted by fish either eating smaller peers or seaweed

in great quantities, which happens if there is not enough nutrient matter in the water.

Organismal Interdependencies

The food intake of the fish scales with their size/age. Next to fish and plants, snails populate the

virtual aquarium. Both micro-organisms and snails transform the fish’ excrements in the water
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in nutrient matter that agglomerates in the seabed. This mechanism completes the nutrition

cycle in the system. In order to provide ample visibility, the presence of snails also represents

the transformative power of micro-organisms in our simulation. This means that snails are the

only organisms accessible to the user that filter dirty water (from fish excrements) and feed

nutrients into the seabed. In reality these processes would be addressed by both snails and

micro-organisms. Same as fish, snails breathe in oxygen and breathe out carbon dioxide.

For the user to create a closed ecosystem, he needs to add members of each class of organisms

and ensure that their mutual impacts keep a nice balance. Fish and snails need to breathe in

a certain amount of oxygen and need the carbon dioxide to be below a certain level to keep

from su↵ocating. Plants need to breathe in a certain amount of carbon dioxide, otherwise they

su↵ocate. Fish need to absorb nutrient matter from the water, snails filter the fish’ excrements,

and seaweed absorbs nutrient matter from the seabed.

Additionally to the aforementioned interdependencies, each organism takes up a certain amount

of space. When the fish tank gets too crowded, the fish will get stressed and will be unable

to procreate. The procreation of fish adds another layer of complexity to the system. Due to

the procreation of the fish, the user cannot easily anticipate the needed amount of inhabitants

of the aquarium before starting the simulation. Therefore, the user needs to react to changing

conditions on the fly, either by removing individual fish or by providing more nutrient matter,

as well as snails and plants to find a new equilibrium.

Model information about the individual organisms is made available to the user on demand.

A shopping interface allows to choose and add organisms to the ecosystem. The user needs to

earn virtual currency to buy the organisms in the store. He earns coins by keeping animals and

plants alive for as long as possible. This positive feedback mechanism ensures that the user is

not immediately overwhelmed by a great number of organisms in the tank and also that fewer

expensive organisms are added at first that are harder to cope with. At the same time, keeping

a healthy ecosystem is directly translated into a rewarding sensation with actual impact on the

interaction possibilities.

Currently, a selection of five fish is o↵ered in the virtual store. Their impact on the ecosystem

only di↵ers due to their di↵erent sizes which in turn a↵ects their metabolic rates. Otherwise,

they all play the same role in the system. That means that all fish breathe in oxygen, consume

nutrient matter, emit carbon dioxide, and leave excrements behind. Yet, the respective amounts
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vary from species to species. The store interface also provides additional information about the

organisms, as exemplarily shown in Figure 8.4.

Figure 8.4: Additional information about a guppy fish is o↵ered to the user in the virtual
shopping interface.

Modelling Metabolisms

There are several model assumptions that have been made to keep the model complexity man-

ageable. In particular, we assume a constant water temperature of 20�C, we do not consider

the day/night cycle, we consider 9mg/l of oxygen as fully saturated freshwater ([428]), 50mg

O
2

consumption per 100g of fish body weight per hour ([429]), 5mg O
2

production by 1g of

algae per hour, and a 10sec integration step size of the simulation.

Table 8.1 lists the model variables involved in the calculation of the degree of oxygen saturation

in the tank. The binary function oCO
2

(t) indicates whether or not a surfeit of carbon dioxide

can be determined at time step t, i.e. a CO
2

value greater than or equal to twice the standard

level of CO
2

is detected.
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h, w, d 2 R⇤
+

fish tank dimensions (cm)
c 2 R⇤

+

= h⇥ w ⇥ d fish tank capacity (cm3)
li 2 R⇤

+

= c/1000 fish tank capacity (litres)
P set of all plants
A set of all animals
O

2

(t) 2 R⇤
+

= li ⇤ 9 amount of O
2

(in mg) at time t = 0
i = 10 integration step size (seconds)
oCO

2

(t) 2 {0, 1} strong over saturation of CO
2

at time t

Table 8.1: Model variables for calculating oxygen saturation.

Based on the given variables, we calculate the amount of O
2

(in mg) at time t according to

Equation 8.1. The oxygen saturation level is the ratio of current oxygen in the system relative

to the initial oxygen level at t = 0. In conclusion, the oxygen saturation is influenced by the

amount of oxygen produced and used by each organism in the fish tank. Exemplary values for

the O
2

consumption of model organisms are listed in Table 8.2, whereas the intake is negative

for algae since they produce oxygen.

O
2

(t) = O
2

(t� 1) +
X

p2P

O
2

(p)�
X

a2A

O
2

(a)

� (
X

a2A

O
2

(a) ⇤ 0.25) ⇤ oCO
2

(t� 1)
(8.1)

species body weight O
2

intake

Pterophyllum scalare 300g 0.42 mg/i
Poecilia reticulata 10g 0.014 mg/i
Aponogeton ulvaceus 50g �1.39 mg/i
Alternanthera reineckii 100g �2.78 mg/i

Table 8.2: Exemplary values of O
2

intake of model organisms.

Figure 8.5 shows an exemplary evolution of the oxygen saturation level. Until t = 4, 24 fish

(12 Pterophyllum scalare and 12 Poecilia reticulata) slowly decrease the level of oxygen in

the aquarium, despite the presence of two plants (Aponogeton ulvaceus and Alternanthera

reineckii). At t = 4, one of the two plants dies o↵ and the oxygen depletes twice as fast as

before. The lack of oxygen leads to su↵ocation of 21 fish at t = 7 which results in the recovery
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of the oxygen saturation rate based on one remaining plant.

Figure 8.5: Oxygen saturation over time.

The amount of nutrients, the amount of dirt and the amount of carbon dioxide are computed in

the same way as oxygen. Yet, the according equations consider the di↵erent organisms’ impact

on these variables. In case of nutrients in the water, the organisms take on the same role as

for the oxygen level—plants increase their level, animals reduce it. Only the actual values of

nutrient matter provided and consumed di↵er. The roles of the organisms are switched in terms

of carbon dioxide, i.e. animals exhale CO
2

output and plants consume it. Dirt arises from the

set of all fish F and is diminished by the set of all snails S, resulting in Equation 8.2.

Dirt(t) = Dirt(t� 1) +
X

f2F

Dirt(f)�
X

s2S

Dirt(s) (8.2)

Simplifications

Balancing complexity and accessibility, we have setup an approximative model. Therefore, we

have to investigate the impact on the model accuracy conveyed to the user. The fish o↵ered to

the user to populate the aquarium resemble two popular ornamental species, the guppy and the

scalare. The guppy mainly feeds on zooplankton which is living plankton, in the simulation it

feeds on plankton produced by seaweed ([430]). Scalare are known to eat small fish as portrayed

in the simulation ([431]). Snails do have a cleaning e↵ect on the fish tank, yet they usually

eat leftover food and algae ([432]). As mentioned before, the snails also visually represent the

role of micro-organisms in the ecosystem, to empower the user to easily trace and influence the

delicate dependency network.



8.3. Methodology 181

Despite its simplifications, the current model conveys foundational interdependencies an aquar-

ist needs to be aware of. Therefore, we feel the overarching goal of educating about ecological

systems’ dynamics is not weakened. Yet, we would like to identify and integrate new ways

of high-level visualisations for improving the model accuracy without jeopardising The Digital

Aquarist ’s accessibility.

8.3.2 User Challenges

The learnings of The Digital Aquarist result from freely exploring, learning (primarily) by trial-

and-error, and mastering a potentially great complexity of an ecosystem. They include a notion

of the basic interdependencies of the interacting species as well as their evolution over time:

Depending on the metabolic status of the aquarium and the configuration of its population, the

e↵ect of adding individual organisms to or removing them from the tank is delayed. In order

to successfully manage the aquarium, the user has to anticipate these developments. This is

especially challenging as each organism influences more than one system variable.

Without user intervention, the collapse of the ecosystem might accelerate, for example by

hungry guppies eating seaweed as seen in Figure 8.6. Devouring seaweed further lowers the

amount of plankton in the water, thereby making food an even scarcer resource. This example

illustrates how easy it is to disturb an ecologically balanced system and that restoring that

balance is not easy, especially if many di↵erent species are involved.

8.3.3 User Interface

As seen in Figure 8.1, three system variables (O
2

, CO
2

, and dirt) are represented by gauges

which enable the user to check the current levels at a glance. Coloured segments indicate the

criticality of the respective variables, whereas green indicates a favourable situation, yellow

requires the user’s attention and red underlines a fatal system state. An increasing level of dirt

is also reflected by the water gradually turning green (Figure 8.7). The icons on the left-hand

side of the screen indicate the duration of the simulation in progress, the cumulative score

and the overall satisfaction of all organisms in the tank. These information are represented

by the timer, the diamond and the smiley icon, respectively. The levels of nutrient matter in
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Figure 8.6: Guppies eating seaweed due to a lack of plankton in the water.

the seabed and water are displayed as numbers on the right-hand side of the screen, as the

only restriction for them is not to reach zero. Since the fish tank provides limited space it

is important for the user to know how many more fish and plants he can add to the system.

Therefore on the lefthand side there are indicators how much space in cm2 is left for plants in

the seabed and how much space in cm3 is left in the water for fish. The user interface enables an

intuitive understanding of the status quo and quickly provides feedback about the ecosystem’s

evolution.

It is important to invest e↵ort into the visual appeal of an interactive aquarium simulation—

after all, ornamental fish are not only kept for the fascination for living organisms only but

also for their elegance and beauty. Figure 8.8 shows the flocking of fish which mimics a life-like

behaviour and a realistic look of aquarium. The flocking behaviour of fish was implemented

according to the boid concept by [1]. Here, each individual moves in accordance with its

neighbours (Figure 8.9). In particular, it is urged to keep a minimum distance from its peers (

separation urge), to flock towards the average location of its neighbours ( cohesion urge) and to

align its velocity with their average velocity ( alignment urge). We generate circular waypoints

throughout the aquarium to let the schools’ movement appear naturally.



8.4. Discussion 183

Figure 8.7: The water gradually turns green with an increasing degree of dirt.

Soothing background music creates an inviting, relaxing atmosphere. Typical sounds of aquar-

ium pumps and occasional oxygen bubbles popping on the surface help the user feel immersed

into the simulation.

8.4 Discussion

The user can e↵ectively balance the system variables by adding and removing organisms to

and from the aquarium. He is rewarded for using more complex scenarios by a scoring/virtual

currency system. In particular, higher scores are achieved when hosting bigger fish like scalares

rather than relatively small guppies. The earned points can be spent on further additions to

the aquatic ecology. We made The Digital Aquarist available online and invited colleagues and

acquaintances by means of email lists and social media postings to evaluate it. In the according

online survey, 31 testers provided anonymous feedback.

Table 8.3 shows their ratings regarding general aspects of The Digital Aquarist. From left to

right, the percentages of testers reflect which aspects were “very poor, poor, fair, good, or
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Figure 8.8: A school of guppies animated in accordance with the boids model ([1]).

Figure 8.9: The boid flocking model considers cohesion towards perceived neighbours (pink
arrow), separation from peers that are too close (red arrow) and alignment with the neighbours’
average velocity (blue).

excellent” (represented as “��,�, o,+,++” in the table). A majority felt that the topic of

the game was a good choice, that the model complexity was appropriate, that The Digital

Aquarist was easy to use and provided some fun. The aesthetics of the game and the learning

e↵ect were mainly rated as “fair”, the intuitiveness of the game mechanics was rated as “poor”.

The latter fact stroke us as particularly interesting as the game mechanics are aligned with

the model facts the users would learn—if they were considered intuitive in the first place,
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there would be little knowledge that could be learned. And indeed, a majority of testers felt

that they had learned about ecological balance (44, 44%) and about aquarium ecologies in

particular (48, 15%). These opinions were supported by some multiple choice questions that

inquired about the aquatic organisms’ interactions. A great majority of testers recognised facts

about the metabolism of fish, snails, and seaweed. Yet, their feeding habits were not as clearly

understood. For instance, 11% of the testers erroneously thought snails contributed to the

pollution of the water, only about 40% realised that fish eat other fish (which only happens

if other food sources become scarce), and only 26% recognised that seaweed was involved in

nutrient production.

�� � o + ++

Game
Topic

0 12,9 25,81 45,16 16,13

Aesthetics 3,23 6,45 38,71 35,48 16,13
Model
Complexity

0 12,9 32,26 48,39 6,45

Fun 16,13 16,13 25,81 29,03 12,9
Learning
E↵ect

12,9 12,9 41,94 25,81 6,45

Intuitiveness
of Game
Mechanics

3,23 35,48 19,35 25,81 16,13

Ease of
Use

6,67 10 20 40 23,33

Table 8.3: Ratings (in %) of di↵erent aspects of The Digital Aquarist provided by 31 anonymous
testers.

8.5 Summary & Future Work

The Digital Aquarist provides a small-scale ecosystem based on simplified metabolic models.

An accessible user interface is supported by animation, visualisation and audio tracks to provide

for an open-ended simulation experience that conveys the delicate balance needed to maintain

a complex system.

A user survey of our first implementation of The Digital Aquarist indicates that we have suc-

cessfully addressed certain challenges, including finding a proper level of abstraction of the

simulated model as well as providing the necessary accessibility. Yet, we also appreciate that

there is leeway for further improvement. Component-based development environments render
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it quite easy to setup intricate tracking shots that could allow the user to follow individual fish

or snails, to experience the ecological processes in a more immersive manner and to reveal inter-

actions close-up. These perspectives could be supported by intricate animations, for instance

based on particle systems, to clearly visualise organismal activities such as nibbling, eating,

and excreting. In addition, diagrammatic augmentation could drastically speed up the learning

process, indicating the relationships among the organisms on demand. In order to keep the user

interested over a long period of time, the repertoire of available species, decorative items, and

technical add-ons could grow after successfully mastering a balance for a given timespan. Along

these lines, one should even consider providing di↵erent sizes, shapes and kinds of aquariums.

The iconic fishbowl bears di↵erent possibilities and challenges than a saltwater tank.

We have scheduled a demo/play event for teenagers, our targeted user group. Based on its

success, we are planning the public, mobile release of The Digital Aquarist.



Chapter 9

PowerSurge: A Serious Game on

Power Transmission Networks

In this paper, we present an interactive serious game about power transmission systems. The

system familiarizes novices with the basic design and behavior of such systems. Using simple

drag and drop interactions, power plants and consumers are placed and connected in a virtual

landscape that is presented from an isometric perspective. A series of tutorials fosters the user’s

mastery in building and controlling a complex system. The advanced user is challenged by tasks

such as the redesign of an established power infrastructure to integrate a large percentage of

regenerative power plants. Next to the interface, we detail the model that drives the simulation.

The methodologies presented in this paper can be applied to a wide range of serious games about

complex network designs.

Sebastian von Mammen, Fabian Hertwig, Patrick Lehner, Florian Obermayer:

PowerSurge: A Serious Game on Power Transmission Networks. In: EvoApplications

Proceedings of the 18th European Conference on Evolutionary Computation (EvoStar),

vol. 9028, Springer, April 2015, pp. 406–417.

9.1 Introduction

Energy management is an important challenge that governments have to struggle with. The

general trend to turn away from climate straining and unsafe technology such as nuclear power
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and fossil fuels to smaller but renewable energy sources requires a more decentralized energy

distribution infrastructure [433]. The turn from all-time available power to regenerative but

unsteady resources poses non-trivial challenges: Energy has to be e�ciently stored locally

to counteract the sporadic absence of wind and solar radiation, see for instance [434] and

[435]. On the other hand, transportation of electricity from regions with high yield has to

happen e�ciently. Adapting the infrastructure is a di�cult task, and it is useful to explore the

existing capabilities and virtualize any changes before their implementation. A broad overview

addressing the challenges of current Power Transmission Systems (PTS) is provided by [436].

In this paper, we present PowerSurge, an interactive simulator for PTS. We detail its user inter-

face, gamification elements and the underlying model that drives the simulation. PowerSurge

introduces users who are new to the field of PTS to gain a high-level understanding of the

challenges faced in their design and maintenance, and a feeling for complex behaviors in such

networks. Due to the similarity to other complex science themes such as social or economic

systems, see for instance [437], the methodologies presented in this paper can be transferred to

a wide range of serious games.

In Section 9.2, we first survey existing power simulation systems, emphasizing their distinctive

features. Next, in Section 9.3, we present our software, including its design principles, its user

interface, and a detailed discussion of our domain model. We conclude with a short summary

of our results and an outlook on future work and future use of the presented concept.

9.2 Related Work

Existing simulation and analysis software for power transmission and distribution systems is

mainly aimed at industry professionals. Requirements for extensive knowledge in the field and

access to data for a transmission network’s components pose high barriers to entry for these

programs.

PowerWorld Simulator [438], for instance, is a commercial product to interactively simulate

large-scale power transmission systems in great detail. While there are educational and research

licenses available to make it accessible for non-industry users, the project’s source code and

development are not open so its extensibility is rather limited.
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Other projects like OpenDSS [439] and GridLab-D [440] are open source projects aimed at

research and planning purposes. Both of these tools have extensive simulation and analysis

capabilities and support a wide array of grid types and distribution elements, but they are not

interactive simulators.

Additionally, all three of these systems require very detailed data about the elements of the

transmission system to simulate, as they calculate all data of the network. While properties

like reactive current and line frequency – both specific to AC power – are important in real

systems, their meaning and impact is rather cryptic to the novice user. Beginners would have

trouble finding, for example, the resistance and thermal properties of transmission lines, the

e�ciency of power plants and transformers, and many more data required to set up simulations

in these existing systems.

9.3 PowerSurge Design

In this section, we detail the design concept of the PowerSurge software, including its user

interface, gamification elements [416], and its underlying domain model.

9.3.1 Visualization of Simulated Units

To simplify the visual representation of the power transmission network, the system is based

on the look and feel of a board game. Game pieces which can be placed on the playing field

(a map of Germany) are nodes that represent power plants, consumers, distribution nodes and

transmission lines which connect the nodes to form a network. The nodes are composed of a

3D model to represent the type of the node and a base plate on which additional data can be

represented. The models are simplified but the optical characteristics of each node type allow

for easy visual distinction by the user. The available node types are shown in Figure 9.1.

The diameters of the transmission lines symbolize their power capacity. The magnitude and

direction of the power flow is visualized by the movement speed and direction of the stripes

on the connections’ surfaces. An example network of the major power plants and cities near

Augsburg and Munich is illustrated in Figure 9.2.
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Figure 9.1: All node types available in our simulation. From left to right, these are: a distribu-
tion node, a consumer node, a nuclear power plant, a coal power plant, a hydro power plant, a
wind park and a solar power plant.

Figure 9.2: An example network. The visible game elements are: nuclear power plants (N), a
coal plant (C), cities (U) and distribution nodes (D), all of which are connected by transmission
lines (T).

We used various techniques to represent the current state of the network. (1) A pie chart on

the generator nodes’ base plates fills according to the current load. The indicator also changes

its color in a gradient from green to red the closer the load gets to the maximum output. (2)

The maximum power output of a node is represented by its size. When a node is dropped

onto the field, its size is scaled up or down according to its maximum output relative to the

network’s overall power generation. Whenever the distribution of power generation among all

power plants on the field changes, the relative sizes are updated to reflect these changes. The

same technique is used for the transmission lines. The more power it can transport, the thicker

the line gets. (3) To show the direction of flow and the amount of electrical power transported

by a line, the black lines on each transmission line’s surface move in the direction of the power

flow. The movement speed depends on the amount of power transferred on this line relative to

the maximum power flow of all lines on the network. This way the user can quickly determine
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Figure 9.3: Nodes and transmission lines are scaled according to their current load or power
output. The thicker transmission line (T) currently transports more power than the thinner
line (t). Analogously, the larger power plant (N) generates more power than the smaller one
(n)

which lines transport a lot of power and which lines don’t. An example of these relative sizes

is shown in Figure 9.3.

It is possible for a transmission line to be overloaded by a distinct percentage. While this

should be avoided and is not a permanent solution for a stable network, it makes the network

more resilient toward short bursts of power. In case a line is overloaded, the color of the white

stripes on the line’s surface turn red to alert the user to the problem.

Introspection of the various simulated units allows to access additional data such as the gener-

ator nodes’ output (Figure 9.4), the consumer nodes’ power intake, maximum load, and daily

load patterns, or the power lines’ transported power, their maximal capacity, and their possible

overload. For an overview of the date of the whole network, the sidebar presents various infor-

mation like the total produced and consumed power, the amount of power lost due to resistance,

the percentage of fossil or renewable energy production and further more information.
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Figure 9.4: The information bar for a generator node shows its current power output and the
maximum output randomization amplitude (A), the minimum and maximum power output
(B), and the daily maximum production pattern (C).

9.3.2 User Interaction

In our simulation, it is possible to change the parameters of all nodes and transmission lines

while the simulation is running, and the user will experience a real time adaptation of the

network to the new settings. To add nodes to the system, the user can select the desired type

of node from the sidebar and then drop it anywhere on the field, though it is not possible to

drop nodes on top of each other. Connections can be drawn between individual nodes, selecting

them in connection mode. Yellow and red backdrops of the targeted nodes indicate whether or

not a connection can be established. By clicking on a node or transmission line, that game piece

gets selected, which is indicated by a green highlight around the object. While a game piece is

selected, the user may remove it from the game – as long as this action is not forbidden by the

game scenario the user is challenged with. This case may also keep the user from inspecting an

object and changing all its parameters as seen exemplarily in Figure 9.4.

9.3.3 Gamification

In order to encourage the user to explore the simulator the application o↵ers three di↵erent

stages of the game. We included a set of tutorial levels to introduce the user to the contents of

the software, the meanings of the visualizations, the interaction mechanics, and the goals and
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Figure 9.5: The first tutorial level to guide the user step-by-step through the interaction me-
chanics and to familiarize him with the simulated domain. In red, we hint at a sequence of
steps that establishes the required connection to move on to the next level.

challenges of the simulated domain. The first tutorial level is exemplarily shown in Figure 9.5.

As soon as the user is familiar with the basic interaction mechanics and the relationships of

the simulated units, he can prove himself in scenarios of increasing di�culty. In the according

scenario mode, the user has to overcome some predefined constraints in order to achieve cer-

tain goals. One scenario asks, for instance, to provide at least 20% of consumed power from

renewable sources while using no more than 20 power plant and 30 transmission lines supplying

a given set of consumers. The user is presented with a list of the subgoals for each scenario

before it begins, and he can revisit this list at any time via the game menu. An example of this

overview screen is shown in Figure 9.6. After fulfilling all the subgoals of a scenario, the user is

notified and he may advance to the next one. If subgoals are no longer satisfiable, for instance

when a time-limit is exceeded, the user fails in that scenario. An appropriate game over screen

is shown and the user may restart this scenario or switch to a di↵erent one.

PowerSurge also includes a discovery mode, a scenario free of any constraints, where users can

try out various model configurations on their own agenda. When the simulation is running

in discovery mode, the user may construct arbitrary power transmission networks with no

restrictions on size of the network, resources spent or network composition. Even the otherwise

imposed fixed time sequence is now softened: here, the user may go back and forward in time

as desired. All produced data, i.e. time series of all the graph’s variables, can be logged on

disk as portable comma-separated lists for further analysis. Through this interface for scientific



194 Chapter 9. PowerSurge: A Serious Game on Power Transmission Networks

Figure 9.6: Exemplary display of the goals of a scenario. These goals are presented to the user
before diving into the simulation.

evaluation, one could, for instance, measure network properties, such as topology, robustness

(in terms of redundancy and minimum supply) etc.

9.3.4 Scripting Game Contents

Especially in an educational setting it is important to have the flexibility of defining specific

problem scenarios. PowerSurge is designed to be extended accordingly. Goals and constraints

of new scenarios can be scripted based on a variety of possible subgoals provided by the engine.

An overview of these subgoals is shown in Figure 9.7. In the following, we describe some of

these goals.

The first goal, i.e. Max Time To Achieve Goals In Days, sets a global time limit for all sub-

goals to be completed. Exceeding this limit, results in failing the scenario. The second one

determines the minimum percentage of renewable energy produced in the Power Network. Ad-

ditionally, a period can be set, how long the system has to supply that proportion continuously

(using AVGProduction Period Length). Consider, for Instance, that at night there is less avail-

able renewable power available than on a bright sunny day, when solar radiation can also be

harnessed. The goal, Max Network Failure Time denote the maximum limit of time a network

failure is allowed to last. If Network Failure Time Stacks is set, that time will not be reset, if

the system stabilizes again. A single-component graph is required, if the goal Network Graph

Must Be Complete is set. This means that starting at any node, every other node on the play-

ing field must be reachable. No disjoint network components are permitted. Each requirement

is individually adjustable, being ignored if set to the default value (�1 or disabled). During
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Figure 9.7: Scriptable goals for new scenarios (entries with the default parameter �1 are not
considered for the evaluation).

the simulation, all of the subgoals are continuously tested to detect whether the overarching

scenario goal is already met, or, in the worst case, cannot be reached any longer.

In PowerSurge, o↵ering challenges to the user is synonymous with restricting his interaction

possibilities, i.e. going from an all-flexible editor towards a concrete real-world problem per-

spective. Otherwise, the user could easily bypass the designed challenge by deleting lines or

nodes, or by adjusting their production or throughput values. Therefore, we implemented a

simple access rights management system for the simulated objects. As a result, user access can

be individually adjusted for each object when setting up new scenarios. There are three access

modes: (1) Modify and delete grants the user full rights to modify the object’s properties or

even remove it from the screen. (2) Modify only allows the user to modify all properties but

not to remove the object itself. (3) Sealed means that the user can only view the placement’s

current properties to react to its behavior during play.
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9.3.5 Domain Model

Formally, the power transmission network in our simulator is represented by an undirected

graph. In this graph, the vertices or nodes are the consumers (e.g. cities), generators (power

plants) and distributors (which neither produce nor consume power). All node types share

one property, the power production/consumption P
self

, which is positive/negative if the node

generates/consumes power, or zero, if the node solely distributes power. In addition, the

constant base consumption of a consumer node is captured by P
base

. A load pattern defines the

node’s fluctuating power consumption over the course of a day. A generator node has both a

minimum and a maximum power output value P
min

and P
max

, respectively. Its output is further

modified by a function of time (consider day/night cycle), and a randomized fluctuation with

the amplitude of P
randAmp

. The nodes are connected by means of transmission lines. The

resulting graph is irreflexive, i.e. no node can be connected to itself. A transmission line is

characterized by the two nodes A and B to which it is connected, its length l, its maximum

power load P
max

and its maximum overload factor f
overload

.

In addition to user-defined or scenario-dependent parameters, the simulation has to solve for

specific variables, such as the actual power output of all generators and the power flow on

all transmission lines. To derive these values, we set up a system of equality and inequality

constraints modelling the behavior of the network. We then minimize an evaluation function

within these constraints, using a boundary, linear equality and inequality constraints solver

provided by the accessible and established open library ALGLIB [441, 442]. We were able to

directly embed it into our development environment, Unity3D1. In the following paragraphs we

present both the evaluation function and all constraints imposed on its optimization.

As the transmission lines are bidirectional, power on each line can flow in either direction. The

power loss due to the line’s electrical resistance depends on the amount of power flowing into

the line. To properly apply the power conservation to the transmission line, we must therefore

know in which direction the power flows. To accommodate this, we split each bidirectional

power line into two unidirectional power paths in the context of the optimization. This means

that a transmission line whose endpoints we call A and B has four optimization variables, power

inflow and outflow for the path from A to B (PAB

in

and PAB

out

, respectively) and for the path

1
http://unity3d.com

http://unity3d.com
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from B to A (PBA

in

and PBA

out

, respectively). The evaluation function h optimized by the solver

is composed as follows:

h =
X

i2lines

(L(i) + S(i) +O(i)) (9.1)

where for a given transmission line i the power loss L(i), the squared power values S(i) and

the overload O(i) are defined as:

L(i) = �l(i) ⇤ PAB

in

(i) + �l(i) ⇤ PBA

in

(i) (9.2)

S(i) = PAB

in

(i)2 + PAB

out

(i)2 + PBA

in

(i)2 + PAB

out

(i)2 (9.3)

O(i) =

8
<

:
E(i)2 if E(i) > P

max

(i)

0 otherwise
(9.4)

E(i) = max
�|PAB

in

+ PBA

out

|, |PBA

in

+ PAB

out

|� (9.5)

where � is the power retention factor per km of the transmission lines, l(i) is the length of

transmission line i, PAB

in

(i), PAB

out

(i), PBA

in

(i) and PBA

out

(i) are the power inflow and outflow of

the two paths of transmission line i as explained above, and P
max

(i) is the maximum load of

transmission line i. Power loss on the transmission lines (9.2) is the main criterion we want to

minimize, so its inclusion is obvious. It should be noted here that the power loss is technically

P
loss

= R · I2 = R ·
✓
P
flow

U

◆
2

⇠ P 2

flow

where R is the line’s electrical resistance, U is the line voltage, I is the current and P
flow

= U ·I
is the total power flowing on the line. While the evaluation function could handle this quadratic

function, the constraints for the optimizer must be linear in all variables. We therefore opted

to use the linear relation P
loss

= R0 · P
flow

(where R0 = �l is the power retention factor which

acts as a stand-in for the line resistance) in both the constraints and the evaluation function

in order to keep our system consistent. Including the sum of the squared endpoint power

values (9.3) in the evaluation function minimizes the total power flow on the network. On

the one hand, this serves to prevent power flow over detours – the more line endpoints need

to be traversed by power flowing from generators to consumers, the more it factors into this

summand. On the other hand, this prevents power from flowing in both directions at once

on any transmission line, which would incur more power loss while reducing the net power
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transported over the respective line. Lastly, the overload summand (9.4) ensures that line

overloading, while allowed, is discouraged. To achieve this, the overload summand is zero if the

line is not overloaded. Once the line load enters the overload interval, this summand contributes

the squared e↵ective power flow of the line.

When searching for the equilibrium of a given power transmission network, the evaluation

function discussed above is minimized with a set of constraints. This set is composed of two

constraints for each node and eight constraints for each transmission line present in the network.

A node n of any type must meet the power balance constraint:

P
self

(n) +
X

i2cons(n)

(P
in

(n, i) + P
out

(n, i)) = 0 (9.6)

where cons(n) is the set of all transmission lines connected to node n, P
in

(n, i)  0 is the power

flowing from n into the line i, and P
out

(n, i) � 0 the power flowing from i into n. This equality

constraint (9.6) states that the total amount of power flowing into a node n must equal the

total amount of power flowing out of the node. In other words, taking the node’s own power

generation or consumption P
self

into account, no power may “magically” appear or disappear

on the node. As previously mentioned, a distribution node n
d

neither generates nor consumes

power, so its local power is constrained to 0:

P
self

(n
d

) = 0 (9.7)

The local power of a consumer node n
c

must exactly match the node’s current consumption:

P
self

(n
c

) = P
consume

(n
c

, frac(t))  0 (9.8)

where the power consumption P
consume

(n
c

, t) at simulation time t (in days) is determined by

the load pattern of the consumer node over the course of a day. As the simulation time t is

given in days, we extract its fractional part frac(t) as the time of day. On a generator node

n
g

, the local power is constrained by the power output bounds:

0  P
min

(n
g

)  P
self

(n
g

)  P
max

(n
g

, t) (9.9)
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where the simulation time dependent maximum power output P
max

(n
g

, t) is determined as:

P
max

(n
g

, t) = P
pattern

(n
g

, frac(t)) + uniform(�P
randAmp

(n
g

), P
randAmp

(n
g

))

The constant parameter P
min

(n
g

) is the plant’s minimum power output boundary. The plant’s

maximum power output is determined by a pattern P
pattern

(n
g

, frac(t)) analogously to the load

pattern of consumer nodes. For renewable energy generation like wind and solar power, which

are heavily subjected to natural fluctuations, an additional summand samples a uniformly

random value within the given randomization amplitude P
randAmp

. This fluctuation can be

reduced or completely disabled for other plants, e.g. nuclear power plants, by setting P
randAmp

=

0. For each transmission line i, these eight constraints apply:

�l(i) · PAB

in

(i) + PAB

out

(i) = 0 �l(i) · PBA

in

(i) + PBA

out

(i) = 0 (9.10)

PAB

in

(i)  0 PBA

in

(i)  0 PAB

out

(i) � 0 PBA

out

(i) � 0 (9.11)

|PAB

in

(i)|  f
overload

(i) · P
max

(i) |PBA

in

(i)|  f
overload

(i) · P
max

(i) (9.12)

The equality constraints (9.10) represent the power balance on the transmission line i. The

amount of inflowing power PAB

in

(i) or PBA

in

(i), scaled by the line’s power retention factor �l(i),

must equal the amount of outflowing power PAB

out

(i) or PBA

out

(i), respectively. The boundary

constraints (9.11) state that the variables for power flowing into the line, PAB

in

(i) and PBA

in

(i),

must have a negative sign, while those for power flowing out of the transmission line, PAB

out

(i) and

PBA

out

(i), must have a positive one. Notice that it su�ces to include only one of the inequality

pairs (9.11) in the actual optimization. Together with the power conservation constraint (9.10),

either of these boundary pairs implies the other one. Finally, the inequality constraints (9.12)

ensures that power flow on no transmission line exceeds that line’s e↵ective maximum load,

which is the product of the line’s regular maximum load P
max

(i) and its maximum overload

factor f
overload

(i).
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9.4 Results & Future Work

We designed a system that allows the users to interactively learn about and explore the com-

plexities inherent in power transmission systems. Several basic tutorials cover the basic re-

lationships of producer and consumer nodes, introduce the intricacies of patching overloaded

networks, and to minimize the utilization of resources such as the overall length of the power

lines.

In a competition on interactive simulations, we presented PowerSurge to about 30 people, most

of them students. They voted PowerSurge to be the best out of seven projects, including

interactive simulations in domains as far apart as biology and tra�c systems. Criteria in the

competition comprised the complexity of the scientific model, the usability, and the visual

appeal.

At this point, important aspects such as local energy storage systems are still missing, however,

an understanding of the complex interplay between producers and consumers can already be

gained. Apart from improving the functionalities of the simulator, we deem the following

aspects as especially beneficial extensions: A highscore system could lead to a better grasp on

the user performance and build social ties between the users, which is an important factor of

motivation. Along these lines, multi-player modes could promote the collaborative (re-)design

of power grids at moderate scales or increase the fun through one-on-one or team competitions.

An extension of the time system could allow the user to go back in time and review the changes

that were made to the system. Also it should be possible to create di↵erent branches of the

timeline to tackle some of the problems with di↵erent ideas. New scenarios should allow for the

definition of more constraints, for example the number of each type of node that can be planted.

In addition to numerous other user-centered and technical improvements, we are planning to

test our software as part of an educational curriculum.
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OCbotics: An Organic Computing Ap-

proach to Collaborative Robotic Swarms

In this paper we present an approach to designing swarms of autonomous, adaptive robots.

An observer/controller framework that has been developed as part of the Organic Comput-

ing initiative provides the architectural foundation for the individuals’ adaptivity. Relying on

an extended Learning Classifier System (XCS) in combination with adequate simulation tech-

niques, it empowers the individuals to improve their collaborative performance and to adapt

to changing goals and changing conditions. We elaborate on the conceptual details, and we

provide first results addressing di↵erent aspects of our multi-layered approach. Not only for

the sake of generalisability, but also because of its enormous transformative potential, we stage

our research design in the domain of quad-copter swarms that organise to collaboratively fulfil

spatial tasks such as maintenance of building facades. Our elaborations detail the architec-

tural concept, provide examples of individual self-optimisation as well as of the optimisation

of collaborative e↵orts, and we show how the user can control the swarm at multiple levels of

abstraction. We conclude with a summary of our approach and an outlook on possible future

steps.

Sebastian von Mammen, Sven Tomforde, Jörg Hähner,

Patrick Lehner, Lukas Förschner, Andreas Hiemer, Mirela Nicola, Patrick Blickling:
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10.1 Introduction

In order to benefit from an ever more complex technical environment, its behavioural autonomy

needs to increase appropriately as well. Only then, it may serve its users without requiring

overwhelming amounts of attention. At the same time, a technical system is expected to

o↵er appropriate access for controlling its individual components as well as its global goals.

The control of robotic swarms lends itself well to elucidate this challenge: Ideally, the user

would communicate his goals to the swarm as a whole, without the need of micromanaging the

individuals’ every parameter and interaction. For instance, the user might navigate a flock of

flight-enabled robotic units towards a building and make them work on facade maintenance,

e.g. scrapping o↵ paint, cleaning windows, or trimming greenery. For this to work, a line of

command has to be established that links several levels of the system’s architecture—the user

needs to communicate target and task to the swarm and the swarm individuals communicate to

coordinate their e↵orts. In addition, each swarm individual needs to learn how it can contribute

to the newly posed, global goals, and how it can maximise its contribution.

The field of Organic Computing (OC) aims at translating well-evolved principles of biological

systems to engineering complex system design [115]. It provides the theoretical underpinnings

to quantitatively capture system attributes such as their autonomy and robustness, or pro-

cesses of emergence based on measures of entropy. It also promotes complex system design

by means of a universal, observer/controller-based architecture for adaptive, self-organising

behaviour. With respect to robotics, OC research initially focussed on failure tolerant and

robust hardware architectures, mainly applied to multi-legged walking machines. The most

prominent example is the Organic Robot Control Architecture ( ORCA) [443, 444]. In ORCA,

two kinds of behavioural modules are discerned. Basic Control Units (BCUs) implement the

core behaviour of the robot, rendering it fully functional with respect to the range of possible

tasks. In addition, Organic Control Units (OCUs) observe and modify the BCUs’ configuration

during runtime. The separation between a system’s basic and its extended functionality has

proven itself numerous times—the sympathetic and the parasympathetic division of the human

autonomous nervous system may serve as a famous biological example.

Similarly to ORCA, we follow an OC approach to self-organising robotic systems. In our

approach, each agent in a robotic swarm implements a multi-layered observer/controller (O/C)
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architecture that allows for local, and in unison, also in global optimisation of the swarm agents’

behaviours. The user interface is explicitly included as one layer which accepts modifications

of the swarm’s and the individual agents’ goals. We present the details of the multi-layered

O/C architecture of a single swarm robot individual and we explain how it works in organising

ensembles (Section 10.2). In Section 10.3, we give an example of the reactive, self-regulatory

capacity of the architecture. Section 10.4 highlights the longer-term evolution of collaborative

behaviour, and Section 10.5 demonstrates the workings of the user interfacing layer of the

architecture. We provide links to related works in the respective sections, and we conclude

with a brief summary and an outlook on future work.

10.2 The OCbotics Approach

As mentioned in the introduction, our approach relies on an architectural setup similar to

ORCA. Therefore, we first reinforce the link between our approach and ORCA and related

works. Next, we build on these analogues to preceding works to detail our approach—from the

perspective of a generic architecture as well as of its concrete implementation.

10.2.1 From Single Adaptive Units to Teams

In ORCA, the Organic Control Units change the system under observation and control (SuOC)

based on periodically issued health signals, i.e. messages from the Basic Control Units indicat-

ing their functional working state. In contrast, our approach observes all kinds of available

data about the SuOC. An according observation model specifies exactly, which input data,

configuration parameters, or internally computed results of the SuOC are passed on to the

observer/controller layer. ORCA’s restrictive policy of data retrieval matches its fairly con-

servative array of options for changing the system. Few choices, however, drastically limit the

system’s configuration space and thus promote ORCA’s primary design goals of (a) unearthing

an optimal learning guidelines for adaptation (“the law of adaptation”), and of (b) protecting

acquired knowledge against corruption and maintaining its validity and consistency [445].

The ORCA approach is further limited to single, isolated robots—information exchange with

other robots or collaborative e↵orts among robotic teams were not envisaged in the original
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architecture. Yet, it has been shown that Observer/Controller-driven robots can increase their

learning speed imitating each other [446]. Local communication between robots allows for

establishing real teams that collaboratively perform tasks such as the exploration of unknown

terrain, and that assign each other subtasks in a fair manner—decentralised, without the need

for global control [447, 448].

10.2.2 O/C Architecture

As suggested above, the OCbotics approach is founded in a multi-level observer/controller

architecture. An according diagram is presented in Figure 10.1. It shows four interwoven

architectural levels. Level 0 denotes the system under observation and control, the base of

the architecture located at the bottom of the figure. Immediately above, level 1 retrieves and

evaluates data about the SuOC’s performance. Based on this data, it changes the SuOC’s

configuration in order to optimise its performance, to adapt it to varying conditions and needs.

In particular, the SuOC’s parameters/behaviours are optimised that may result in both good

and bad performance values with respect to a predefined goal (introduced by level 3). As a

consequence, the best possible configuration set, or behaviour, known to level 1 is exhibited

by level 0 at any given situation. True innovation is realised by level 2, one step above in the

multi-level architecture. Here, completely new behavioural options are generated, simulated

and optimised in a sand-boxed simulation environment. Only if the new model specifications

satisfy all safety constraints considered as part of the simulation process, they are eventually

fed into level 1.

10.2.3 Modified XCS

Several studies in Organic Computing have emphasised the adequacy of Learning Classifier

Systems (LCS) as a comprehensive framework to support adaptive observer/controller archi-

tectures, see for example [449, 450]. Already the first LCS presented in 1975 combined basic

rule-based reactive behaviour with an evolutionary component to evolve and improve the rule

base [451]. With the introduction of accuracy-based reinforcement of classifiers, LCS research

reached an important milestone in 1995 [452] (for an overview of LCS research and ongoing

research topics see, for instance, [453]). In the context of safety-critical Organic Computing
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Figure 10.1: Multi-level Observer/Controller Architecture. The System under Observation and
Control (SuOC) at the bottom is observed and adjusted by the O/C layers above. Their re-
sponsibilities are (in this order): reinforcement of existing behaviour, innovating new behaviour,
and interfacing local behaviour with (a) user-set targets and (b) cooperative units’ goals.

applications, the latter extension to LCS, also referred to as XCS, was further modified to suit

the multi-layer O/C architecture outlined above. In particular, three modifications were imple-

mented: (1) The use of continuous value ranges as promoted in [454], (2) the generalisation of

the closest fitting existing rule in layer 1 instead of the generation of a new rule, in case that a

given situation is not covered by the existing rule set (“widening” covering mechanism), and (3)

“sandboxed” o✏ine learning in layer 2 to ensure safety and maturity of new rules/behaviours.

In addition, one can track the impact of those triggered rules e↵ecting changes identical to the

newly generated rule and, thereby, building up trust in new rules before they are considered by

themselves.

In the remainder of this paper, we show preliminary examples of the OCbotics approach each

of which works at a di↵erent level of the presented architecture. In particular, we show an

example of reactive behaviour of a particular system under observation and control (layer

0) and we elaborate on its integration with layer 1 (Section 10.3). An instance of evolved

behaviour (layer 2) in a collaborative swarm robotics setting is presented in Section 10.4. Its

communication across a swarm of agents as well as the interface mechanism with the user of

the system, i.e. layer 3, is explained in Section 10.5.
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10.3 Self-organised Aerial Robotic Construction

Tensile structures play an important role in post-modern architecture [455] and they promise to

become increasingly important still considering their unique versatility and flexibility in com-

bination with advances in technologies in built material and construction methods [456]. They

have also been subject to Aerial Robotic Construction (ARC) research [457, 458] due to their

light mass, load-carrying ability, and their ability of connecting large distances. Quadrotors

have been identified as vehicles apt for aerial manipulation mainly due to their robust flight

behaviour and their hovering capability [459]. In [458], prototypic building primitives such

as single and multi-round turn hitches, knob and elbow nots as well the trajectories resulting

from their concatenation have been discussed. Di↵erent from pre-calculating trajectories, we

have been working on a self-organising approach to building tensile structures. We detail our

approach below, followed by elaborations on its OCbotic-specific features.

10.3.1 Stigmergic Web-weaving

Typically, a spider weaves its web by itself [460, 461]. Complex web constructions, however,

may require collaborative entanglement and tightening of ropes. This can, for instance, be

achieved by synchronised flight through pre-calculated control points to cross the ARC quad-

rotors’ trajectories. Alternatively, the swarm individuals may coordinate themselves relying on

local stimuli, like social insects do [229, 230]. In this section, we present a first such locally

motivated ARC experiment1. Currently, it involves only one quad-rotor that tightens a rope

around a tent pole’s four suspension lines, see Figure 10.2.

Technical Setup

For our lab-experiments, we currently employ the AR.Drone Parrot 2.0 quad-rotor system. It

is connected to a standard PC via WLAN. The PC retrieves the sensory data of the quad-

rotor and issues the according navigational instructions. We make use of the quad-rotor’s VGA

camera that has a 90� field of vision, built-in image-processing capabilities such as marker

recognition, and the estimates of its ultrasonic distance sensor. As this sensor and a downward

1Please find an accompanying video at http://youtu.be/tZNeL-n1dDE.

http://youtu.be/tZNeL-n1dDE
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(a)

(b)

Figure 10.2: (a) The quad-rotor hovers clock-wise around a pole that is suspended by four
lines. It tightens a rope (green, dashed) along the suspension lines. (b) A schematic side-
view extracted from a photograph, highlighting the orientation of the markers pinned to the
suspension lines.
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08.07.2014 4,5h
• Video ohne Faden
• Verbesserung der Spulenbefestigung (besseres Abwickeln)
• Code refactored

09.07.2014 1h
• Video mit Faden

10.07.2014 1,5
• Besuch von Airbus
• Vorführen der Navigation ohne Faden und mit Faden

Figure 10.3: Weaving Behaviour of a self-organising ARC Quad-rotor. It circles clock-wise
around a pole, tightening its thread around suspension lines tagged with directionally oriented
markers.

directed camera are used by the quad-rotor to stabilise its flight, we attached a coil at the top

of the vehicle and unwind the cord through an eye at its back. We interface with the quad-rotor

relying on Nodecoper.js and the node-ar-drone module [462].

Behavioural Definition

The quad-rotor behaves only based on locally available sensory information. In particular, it

implements the reactive behaviour schematically summarised in Figure 10.3: After taking o↵,

it searches for a orange-green-orange marker, which is one of the designs that the vehicle is

programmed to recognise automatically. It keeps spinning right until it eventually finds one. If

the distance to the marker is less than a certain threshold (1m worked quite well), it drifts left.

As a consequence, the detected marker moves outside of its field of view. At this point, the

quad-rotor has surpassed the previous marker and looks for the next one, which is attached to

the next suspension line (also consider Figure 10.2). The distance to the next marker along the

circumference of the pole is greater than the given threshold. The quad-rotor can go straight

ahead, if the tag is within the right-hand side of its view (this condition is labelled ‘tag in area’

in Figure 10.3). Otherwise, it needs to shift a bit to the left.
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10.3.2 Adapting Reactive Behaviour

Programmatically, the quad-rotor’s behaviour (Figure 10.3) is represented as a set of simple

if-then rules. As such, they can be easily subjected to standard LCS implementations and its

extensions such as XCS (Section 10.2.3). Hereby, those rules with the best prediction accuracy

are reinforced to gain the greatest fitness over time, yielding the best possible behaviour. In this

way, the quad-rotor of the ARC example would learn to query the proper sensors at the right

times to react in the best possible way, if the behavioural rule set was enriched with according

alternatives. At the interface of level 0 (the SuOC) and level 1 (the reinforcement learner), the

measure of success can typically be calculated based on locally available information such as the

distance flown or the number of recognised tags. For good learning results, the parametrisation

of the behaviour should be realised at a rather high level, focusing on the selection of queries

and operations and only cover small ranges of variability. Potential benefits of level 1 learning

would not only be optimisation of one particular learning pattern but also behavioural rules

that adapt to hardware particularities such as deviating sensory intake or imbalanced motor

control.

10.4 Collaborative Aerial Robotic Maintenance

At level 2 of the multi-layer O/C architecture, behaviours can be created by means of generative

model building approaches such as evolutionary algorithms and be optimised for deployment

by means of simulations. As a first OCbotics prototype of o✏ine level 2 generation and op-

timisation, we have evolved quad-rotor behaviour for collaborative surface maintenance. In

this section, we introduce the challenge of optimising collaborative surface maintenance. We

detail the technical setup we relied on for both simulation and optimisation and we describe

the behavioural options of each swarm individual. Afterwards, we draw a very rough picture of

the evolutionary experiments that we have run, and we discuss the interactions between layer

2 and 3 for propagating successfully bred behaviours that require synchronisation between the

individuals in an OCbotics swarm.
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10.4.1 Collaborative Facade Maintenance

Consider the facades of large o�ce buildings as examples of vertical surfaces: They are subject

to cleaning [463, 464], trimming greenery [465], and other maintenance tasks. As in the pre-

vious example, these tasks might benefit more from collaborative e↵orts than only in terms of

e�ciency. For instance, fast growing greenery might require one machine to bend, the other one

to cut a branch. Equally, during cleaning, several hovering robots might have to join to build

up su�cient pressure to remove persistent dirt. Of course, the respective operations might also

be split into several procedures performed by individually optimised machines. In this example,

however, we only consider the most modest objective, namely collaborative e�ciency.

Technical Setup

The technical setup of our level 2 experiment comprises (a) a simulation environment to calcu-

late aviation and robotic mechanics, and (b) a machine learning environment with a generative

model component and an optimisation component. Figure 10.4 depicts the software modules

that we have used in order to simulate collaborative quad-copter swarms. The Robot Operating

System (ROS) acts as a hub for these modules. It provides a high-level software interface for

programming and communicating with di↵erent kinds of robots [466]. Gazebo is a simulation

engine that natively integrates with ROS, o↵ering 3D rendering, robot-specific functionality

and physics calculations [467]. Thanks to a ROS driver for the AR.Drone Parrot quad-rotor

[468], and thanks to a Gazebo plugin that simulates the quad-rotor’s behaviour based on the

very same ROS-based instruction set [469], any of the generated behaviours immediately work

in-silico and in-vivo. For the generation of novel behaviours as well as for their evolution,

we decided to use the Evolving Objects framework (EO) [470]. EO is an open framework for

evolutionary computation featuring an extensible, object-oriented architecture, and turnkey

implementations of genetic algorithms, particle swarm optimisation, and genetic programming.

Behavioural Definition

Our approach to collaborative facade maintenance is inspired by nest construction of social

insects [229]. Each individual works on a small part of the construction proportional in size to
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Figure 2.1: Schematic of how the modules in our simulations work together.

One of these is the ardrone_autonomy module [22], which encapsulates the driver
for Parrot’s AR.Drone 2.0 quadrotor and provides a ROS interface for remotely
controlling it. Using exactly the same interface, Huang and Sturm have created a
Gazebo plugin to simulate the flight behavior of this quadcopter [15]. The identical
set of control commands and telemetry reports allows for in-place switching be-
tween simulation and real hardware once the control software is considered mature
enough. Our robot controller uses this interface provided by ardrone_autonomy to
communicate with the simulator plugin or a real AR.Drone. The interconnection
of the involved modules is illustrated in Figure 2.1.

We chose this combination because, while giving us a su�ciently realistic simula-
tion environment for genetic programming, the interface-compatibility of simulator
and driver will make it easier to verify control programs with physical robots in
the future.

13

Figure 10.4: Interwoven Simulation Modules. The Robot Operating System integrates various
software components to simulate quad-rotor swarms. In particular, we control the robot using a
common ROS-based instruction set that is understood by both the Gazebo simulation software
and its quad-rotor simulation plugin as well as a ROS driver that steers the actual quad-rotor
hardware.

the insects’ physique. Accordingly, each simulated quad-rotor divides the target surface in a

grid, each cell measuring 2 by 2 metres, its field of view covering six cells, two rows of three

(Figure 10.5). This partitioning scheme is a result of the size of the quad-rotor itself and its

perceived area from a vantage point close to the surface. Without loss of generality, a dirtiness

value is assigned to each cell that indicates whether it needs to be worked on or not. The

quad-rotor’s internal state, i.e. its remaining battery life, as well as the configuration of dirty

and clean cells that reveals itself in front of it trigger specific actions. The quad-rotor may

return to the base station to recharge. It may fly to one of the cells in its field of view and

clean it. Alternatively, it may move to one of the four neighbouring vantage points to inspect

the respective neighbouring batches of cells.

10.4.2 Evolving Collaborative Behaviour

Figure 10.6 captures the behavioural options of a quad-rotor in the context of facade mainte-

nance. Any activity is initiated by the decision-making component, subsequent events guide the

quad-rotor back into the decision-making process. Again, the behaviours can easily be written

as if-then rules which ensures the coherence and simplicity of interfacing across the layers of

the O/C architecture. Notice that in this model, quad-rotors cannot stop working. Instead,

the whole simulation is terminated after a given amount of time. During this period of time,

the decision-making component determines the success of the simulated swarm. We generate
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(a) The view of a robot. The gray translucent pyramid shows the field of view of the
ARU on the bottom right. The six green, labeled task cells are considered visible
to the robot from its position, while the red ones are not.

(b) A part of the vantage point grid. The green spheres are the vantage points, the
red arrows illustrate neighbor relations between them. For two exemplary vantage
points, the respective view frusta are also included.

Figure 3.2: Cell slots in a robot’s view and vantage point grid.
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Figure 10.5: Cell Grid for Surface Maintenance. The quad-rotor divides the building facade
in a grid of cells. The individual cells represent the immediate target areas to work on. Their
states of cleanliness also provide the local cues for decision-making, i.e. for approaching an
individual cell or to moving to another vantage point.

an according program tree using Genetic Programming [471]. In this paper, we refrain from

presenting the evolutionary approach in all detail, but we want to convey its basic mechanisms

and how it ties into the OCbotics approach. The generated decision program may conditionally

deploy the operations outlined in Figure 10.6, and introduce references or primitive values as

their parameters. The resultant behaviour trees are considered the individuals in an evolution-

ary optimisation cycle, and thus their fitnesses (penalty, a.o., for remaining amount of dirt) are

calculated in according simulation runs, and they serve as an important criterion for selecting

ancestors for subsequent generations of individuals (deterministic tournaments).

We ran experiments featuring two or four quad-rotors, or “aerial robotic units” (ARUs), working

in parallel for 900 to 1500 simulated seconds. Their individual base stations were distributed

randomly in rectangular area sharing two sides with the target surfaces as seen in Figure 10.7.

Population sizes varied from 30 to 100 individuals, the generational cycle was repeated between

10 to 50 times—depending on the work load of an individual simulation which was mainly

determined by the number of interacting agents and the simulated time. One of the best

individuals in an experiment that started from a set of previously evolved specimen worked

as follows: Having arrived at a random cell of the target surface, work through single rows

of vantage points from right to left. If the border of the target surface is reached, return

to the base station and approach the target area again. It turns out that this behaviour



10.4. Collaborative Aerial Robotic Maintenance 213
3 Methodology

Figure 3.5: High-level state diagram of an agent. Edge labels describe the conditions
triggering state transitions. Elliptical outlines denote longer-term states,
while the square outline marks a momentary state of decision making.

in our case by the simulation environment. In our experiments, once a stopping
criterion is met, the simulation is simply terminated. In a more realistic scenario,
a controlling program or facility might send an overriding radio signal causing the
ARUs to return to their base stations and shut o�, for example. Alternatively, the
agents might be deployed in a perpetual work scenario that depends on sustained
work e�orts, such as surface cleaning or lawn mowing.

The centerpiece of the model and the main subject of investigation in our ex-
periments (Chapter 4) is the decision function fAg. The content of this decision
function is developed using genetic programming, the details of which are explained
in the following sections.

3.3 Evolution

This section explains the details of the evolution mechanism used in this thesis.
It shortly repeats the general idea of genetic programming and then goes into
the specifics of our model. We first clarify some terms used in the remainder of
the section and present the genetic representation of our individuals. Then we
explain the general layout of the evolution cycle and the details of the selection
and evaluation mechanisms in use. The section is concluded by a minute discussion
of the genetic variation operators in place.
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Figure 10.6: Options of Activity of a Facade Maintaining Quad-rotor Agent. Any activity—
working on one of the cells ahead, flying to the base station to recharge, or moving to a
neighbouring vantage point—is initiated by the decision component which considers the agent’s
battery state and the surface configuration in its field of view.

proved significantly faster than two decision programs we manually designed before running

the evolutionary process: One of them stochastically selecting dirty cells and considering the

remainder of the battery before taking action (low batteries are also penalised by the fitness

calculation), the other one letting the quad-rotor follow the dirt gradient exhibited in the

perceived 3 by 2 cell matrix.

10.4.3 Sandboxed by Layer 2, Letterboxed by Level 3

Level 2 is capable of generating and evolving collaborative behaviour such as the one described

above. Initially, the novel behaviour does not have any impact on the system under observation

and control. One may say the innovation process is encapsulated in a sandbox and runs

completely separated process, o✏ine. At the same time, collaborative behaviour needs to be

communicated, if it is required to be performed by all individuals of a swarm in order to

function in a coordinated way. The observation of Layer 2 by Layer 3 has to detect such

impending necessary changes and broadcast it to all the other members of the swarm. Similar

to an auction in multi-agent systems [472], the best broadcast solution, i.e. decision program

and fitness value, would be implemented. As an extension, any population-based simulation

and optimisation approaches could be distributed among the OCbotics individuals and their

evolution be concerted across the whole swarm (for distributed population-based optimisation

see, for instance, [473] and [474]). Especially in situations with imbalanced computational loads

across the swarm, following a smart distributed optimisation strategy could yield an important
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With these simplifications in place we can focus on the actual problem of interest:
producing e�ective and e�cient global swarm behavior – that is, working the whole
surface given homogeneous local work loads, and assuming the need for transport-
ing centrally maintained resources – with a simple decision function relying only
on local knowledge.

3.1.4 Scenario Start Configuration

Figure 3.4: Placement area for robots.

At the beginning of a simulation, each
cell is assigned a random dirtiness
value, normalized so that the average
dirtiness value of all cells is 0.5. All
ARUs taking part in the simulation are
placed somewhere on the square de-
scribed by the two halves of the task
surface as illustrated in Figure 3.4. The
ARUs are spread apart to prevent un-
necessary collisions when they take o�
and approach the task surface.

Each robot’s starting location also
serves its base station to which it must
return to recharge its battery, and all ARUs in one simulation use instances of the
same controller, thus producing a homogeneous agent population. More details
about the concrete initial configurations are presented out in the context of the
experiments in Chapter 4.

3.2 Agent Representation

In this section we discuss the logical representation used for the robotic actors in
our model. We describe how our agents perceive their environment conceptually,
how they can react to it and how and when they change their state.
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Figure 10.7: Simulated Environment for Collaborative Surface Maintenance Evaluation. Two
flat surfaces are presented to the quad-rotor swarms as target area which needs to be cleaned.
The base stations of the swarm individuals are randomly placed in the rectangular area between
the surfaces.

advantage.

10.5 User-guided System Behaviour

In our last example, we demonstrate an early prototype of the user interfacing component of

layer 3 of the multi-layered O/C architecture that drives the OCbotics approach. As hinted

at in Figure 10.1, layer 3 mediates the user’s goals vertically to all system layers below and

horizontally to all OCbotics individuals of the system.

10.5.1 Immersive Swarm Control

The preceding examples of web-weaving quad-rotors in Section 10.3 and collaborative surface

maintenance swarms in Section 10.4 implement spatial operations. To some extent, both culmi-

nate in the tandem of local cues and resultant trajectories. As a consequence, defining spatial

targets for arbitrary subsets of a swarm deems to be an adequate task generalisation for a

first prototype of a level 3 user interface. A “ human-in-the-loop” system design forces one to
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clearly define the level of influence a user may exercise versus the level of autonomy the system

may keep [67]. Therefore, we elaborate on the di↵erent levels of access implemented by our

prototype right after we outline its technical foundation.

Technical Setup

Focussing on interactivity, we decided to utilise the turnkey infrastructure of one of the com-

prehensive game and simulation engines. In particular, we decided to use Unity [475] as it

provides a very shallow learning curve (compared to its competitors) while still providing a

powerful coding infrastructure that allows to write custom plugins in C# and which o↵ers a

wide range of third-party plugins in a dedicated asset store. Aiming at the implementation

of a high-level interface, we tapped into these resources as much as possible and bought, for

instance, commercial code bases for simulating flocking behaviours [476] and automated path

finding in three-dimensional environments [477]. We further built on Unity demos and plugins

that support current hardware solutions such as the Oculus Rift head-mounted display [478]

and the Razer Hydra motion controller [479]. In combination, these hardware solutions allow

us to emulate an augmented reality scenario for controlling an OCbotics swarm. Figure 10.8

shows the model of an OCbotics swarm being setup in Unity3D. The light green circles depict

waypoints computed by the path finding algorithm, the dual-view perspective at the bottom-

left corner of the screen indicates the current view of the attached head-mounted display. The

bottom-right window displays the library of components used for modelling the scene, the list

at the right-hand side of the screen shows the components that already constitute the scene.

Behavioural Control

Our user interface prototype immerses the user into a virtual reality shared with the OCbotics

swarm. In the long run, the simulated swarm is meant to make way for a real one, and the

virtual reality for an augmented reality. Already, the user can observe the whole swarm or a

subset tracking it with a virtual camera that follows in a distance and which aims at the centre

of the set of selected individuals. The user can exercise control on any subset of the swarm,

hence he may direct flocks of individuals or single individuals at a time. The interface provides

all kinds of state information about the selected individuals, such as (averaged and variance of)
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Figure 10.8: OCbotics Swarm Modelled in Unity3D. The Unity3D environment allows us to
integrate complex simulation models and immersive user interaction hardware such as motion-
based input controllers and head-mounted displays.
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Figure 10.9: Simulated Immersive Swarm Control. One of the authors is immersed into an
OCbotics simulation. She navigates through movement of her head and using a continuous
joystick of the two motion-controllers. The pair of controllers empowers her to (literally) draw
new spatial relations between the simulated objects, e.g. to set new targets for subsets of the
swarm.

remaining battery life, current target, current trajectory, and currently perceived neighbours.

The user may switch between individuals and greater subsets of the swarm by simply selecting

them. Next, he may change the target of flight or even individual control points along the way.

Of course, he may also change the parameters of the selected individuals such as their urge for

alignment. In our prototype, the user is immersed into the scene of the simulated swarm (see

Figure 10.9) so he can easily trace its activity, understand its relationship to the current target

and to obstacles, and to rectify it, whenever necessary.

10.5.2 Semi-automated Control between Exploration and Exploita-

tion

The presented simulated prototype for immersive swarm control shows how high-level goals such

as setting a new target of the swarm can be communicated in an intuitive way. Di↵erentiated

selection of swarm individuals as well as setting local attributes, such as local targets or local

waypoints, are simple yet clear examples of moving from abstract, high-level goal descriptions
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(target/swarm) to specific low-level commands (trajectory waypoints/individual). For a swarm

and and individual to reach the specified targets or waypoints, complex calculations have to

be performed. In the given example, the need to avoid obstacles and to find optimal paths as

well as the coordination among swarm individuals on their way are outsourced to third-party

plugins [477, 476]. In the general case, also considering other tasks communicated on layer

3, the necessary behaviours could evolve in sandboxed simulations (layer 2) and be optimised

based on local performance feedback (layer 1).

10.6 Conclusion

In this paper we have introduced OCbotics as a comprehensive approach to designing swarm-

based, self-organising robotic systems. OCbotics is driven by a multi-layered observer/controller

architecture that allows to optimise and adapt an adaptable system. Adaptation is required in

order to maintain or increase the performance exhibited by the system under observation and

control—either by optimising or extending existing behaviours, or by innovating, i.e. gener-

ating, simulating, and optimising novel behaviours. The performance, in turn, is measured in

terms of user-defined goals which may also change over time. We have presented three di↵erent

projects that operate at di↵erent levels of the discussed architecture: Web-weaving quad-rotors

with an emphasis on optimised local reactive behaviour, evolution of collaborative behaviour

to e�ciently work on surfaces, and an immersive user-interface for setting and changing user-

defined goals. While the three examples slightly vary regarding their applications, they are

connected through the common themes of self-organisation, rule-based behaviour, and adapta-

tion, and of course, the O/C architecture to host them all. With the pieces of the puzzle at

hand, the next obvious step is to put them into place, to forge the software components into one

(if heterogeneous) code base, to connect the layers of the architecture, to develop a repertoire

of recombinable goal definitions, and to transfer the partially still virtual implementations of

all levels onto an actual OCbotics infrastructure.
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Chapter 11

CoSMoS in the Interactive Simulation

Curriculum

Animations at first, then real-time computer graphics and human-computer interaction tech-

niques have made interactive simulations possible. Nowadays, they play an enormously im-

portant role in training the operation of complex technology such as aircraft, and they have

achieved a remarkable share in the computer gaming industry. The fast emergence of virtual

and augmented reality solutions promises an even wider spread and a greater impact for inter-

active simulations in the near future. Due to the multifaceted nature of interactive simulations

in terms of confluent scientific fields, due to the underlying iterative and agile development

processes, and last but not least due to the inherently central human factors, we have been

integrating the CoSMoS process of complex system modelling and simulation into our course

curriculum on interactive simulation for computer science graduate students. In this work,

based on an overview of the contents and the logistics of the course, we present our conceptual

e↵orts towards this goal. We emphasise the role of the CoSMoS process, discuss its impact on

the students’ projects, and we provide concrete examples.

Sebastian von Mammen, Sarah Edenhofer, Jörg Hähner. CoSMoS in the Interactive

Simulation Curriculum. In: Proceedings of the 2015 Workshop on Complex System

Modelling and Simulation (CoSMoS), 2015, pp. 85–106.
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11.1 Introduction

Since the first human-in-the-loop simulators entered the market in the 1980s [67], interactivity

has evolved into an increasingly important aspect of scientific simulations. Nowadays, estab-

lished mathematics frameworks such as Mathematica, Maple or Matlab provide ample support

for visualisation routines and interactive parametric exploration of any devised models, whereas

development frameworks such as Unity3D, Unreal Engine or CryEngine that primarily target

the computer gaming market are o↵ered and marketed in the context of simulations as well.

Due to the fast-paced strides towards ubiquity of virtual and augmented reality systems [480],

for instance by utilising widely availably smart phones, we expect an even more accelerated

spread of interactive simulations in the near future.

Numerous areas of computer science feed into the development of an interactive simulation—

human-computer interaction, real-time computer graphics, visualisation, modelling and simu-

lation approaches, etc. The according methodologies and techniques are deployed to make a

simulation model accessible to the user. In addition to translating reality into an adequate

domain model and further into a suitable computational representation, or platform model, the

creators of an interactive simulations are confronted by an abundance of user-related interfacing

challenges. In all brevity, they need to translate the user’s wishes into e↵ective commands of

control and model changes, and they need to translate the matter-of-fact results of the simula-

tion process into visualisations (mostly), that are quickly understood and capture rather than

lose the user’s attention. To render the trade even more challenging, all of these translations

need to happen at rather high rates that provide for an uninterrupted interaction experience.

Motivated by their great and growing importance, we set out to teaching students foundational

knowledge about interactive simulations. In particular, we designed a university course to

empower computer science graduate students with an interwoven in-depth apprehension of

methods in the associated fields. Thus, the students acquire knowledge to evaluate and skills

to contribute to the design and the programmatic implementation of interactive simulations. In

this work, we present our course concept, focusing on the role of the CoSMoS process of complex

system modelling and simulation. Based on a description of our course concept (Section 11.2),

we highlight the role of the CoSMoS process in the curriculum as a whole, and with respect

to the accompanying student projects, in particular, in Section 11.3. Next, we present several
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select student projects (Section 11.4), also shedding light on the development processes the

student went through throughout the term. We conclude this work with a summary of our

findings and an outlook on future work on CoSMoS for interactive simulations.

11.2 Synopsis of an Interactive Simulation Course

An interplay of a variety of computer science disciplines provides the foundation for interactive

simulation. Accordingly, the contents of a course on interactive simulation greatly vary depen-

dent on the expected knowledge base of the students as well as complementary courses o↵ered

by the hosting institution. In our case, we devised a university course suitable for master stu-

dents in computer science and closely related programmes of study. The course runs for four

months, staging a 2-hours-lecture and a 2-hours-tutorial each week. In combination with the

allotted project work, the course demands for a total workload of 150 hours.

In the following paragraphs, we summarise the contents of nine provided lecture units. After an

introduction to the subject matter, we teach the CoSMoS approach to modelling and simulation.

Next, foundations of computer graphics are conveyed, as well as a mathematical display of real-

time physics computation models and algorithms. Visualisation methods and an introduction

to human-computer interaction techniques complete the first block of basic lecture units.

The second block of advanced lecture units focusses on model representation and process opti-

misation both of which are important constituents of interactive simulation technology. After

presenting the foundations of discrete event simulation and an array of computational repre-

sentations, popular conservative and approximative acceleration mechanisms in the realm of

interactive applications are discussed. As the versatility and the transferability of an agent-

based modelling (ABM) approach is rather unique but can easily result in costly computations,

we commit another lecture unit to introducing novel research concepts that promise to scale

ABM to reach interactive performances.

11.2.1 A Short History of Human-in-the-Loop Systems

The history of interactive simulation begins with e↵orts to enhance existing simulation data by

means of interactive custom animations. We present an according example, a SIMAN job shop
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simulation model of an automatic guided vehicle system visualised by the CINEMA animation

system [481]. The optimisation of industrial workflows was the most compelling argument for

such animation systems in the 1980s. At the time, the market o↵ered an array of simulation

animation tools, including Model Master, XCell, and Performance Analysis Workstation. Next,

solutions were o↵ered that tightly coupled interactive visualisation with the underlying simu-

lation. See-Why was one of these packages that promised Visual Interaction Simulation (VIS).

An according example allowing the configuration of a locomotive servicing centre is shown [482].

Definitions of basic terms such as model [483], simulation [27], and the early-conceived notion

of interactive simulation (‘ on-line simulation’) [65] follow the introductory historic examples.

The distinctive feature of interactive simulations is the possibility of human influence during

the simulation process, typically referred to Human-in-the-Loop systems [67]. We look at the

taxonomy of interactive simulations, their advantages over stand-alone simulations, established

fields of application, technological challenges, and their historic evolution in respect to pro-

gramming paradigms, languages, and interfaces. The basic steps taken in a simulation project,

especially under consideration of interactivity, and several examples of state-of-the-art interac-

tive simulation systems round o↵ this lecture unit. The examples are organised to guide the

students from comprehensive immersive solutions with special hardware configurations (driving

and flight simulators) to software-only solutions, which are the focus of the lecture.

11.2.2 The CoSMoS Process & Gamification

The orthogonal relationship between descriptive and defining models precedes the remaining

contents of this lecture that primarily aims at the process of modelling and simulating complex

systems. Examples for seemingly disparate approaches are provided that put di↵erent weights

on these respective modelling purposes: In detail, these are understanding complex behaviours

of real-world systems, simulating complex system themes, engineering complex algorithms,

and engineering complex systems [484]. We consider the means of scientific instrumentation

( extrapolation, conversion, augmentation) to become aware of its limits and limitations [485]

and to define the products of the CoSMoS modelling and simulation cycle. The definition of

these products motivates an elaborate discussion of the phases of discovery, development and

exploration [15]. Interactive simulations need to engage their users. The relatively novel para-

digm of turning burdensome chores into games suits this challenge well. Hence, we proceed with
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the presentation of game definitions and, more specifically, aspects of development of computer

games [486]. The short history of serious games (starting in the early 2000s) is summarised

[417, 487] and representative examples are demonstrated (e.g. [488]). Their concrete successes

in terms of engagement are discussed and a comprehensive list of game design elements [416] is

presented that can be utilised to ‘gamify’ an interactive simulation. All of these elements can

be derived from the cornerstones of intrinsic motivation, namely relatedness, competence, and

autonomy which are explained as well [427]. In the context of interactive simulations, these

aspects can be considered during the discovery phase, whereas gamification typically takes place

during the development phase of the CoSMoS process.

11.2.3 Computer Graphics Foundations

The increasing availability of dedicated graphic processing units (GPUs) promotes the utilisa-

tion of a standardised 3D rendering pipeline for any kind of visualisation needs, whether 2D

or 3D, vector-based, or otherwise. Therefore, this lecture units seeks to empower the students

with a basic understanding of this rendering pipeline [489, 486, 490]. Basic concepts that are

presented in this lecture unit are: object definitions based on geometric primitives and various

kinds of textures, the view reference, spatial transformations (also introducing quaternions in

the context of rotational operations), basic types of lighting, shading, and light sources, shadow

definitions and di↵erent implementation techniques such as shadow maps. A short walkthrough

of generating 3D graphic assets suited for real-time rendering rounds o↵ this lecture unit.

11.2.4 Real-time Physics

This lecture seeks to provide a solid grip on real-time capable approaches to simulate physical

processes [491, 492]. We have a quick look at the taxonomy of the vast field of physics simulation

[319] but we focus on real-time methods of forward dynamics, covering three categories: rigid-

body dynamics [320, 321], soft-body dynamics [322], and particle physics [323]. Next to the

general laws of motion, we look at non-penetration constraints, collision resolution and friction

forces, and complementary constraints in the context of rigid body simulation. For calculating

the respective forces, we present the penalty force method, Lagrange multipliers, impulse-

based simulation, and reduced coordinate formulation as well as the Coulomb friction model.
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We introduce a taxonomy of constraints and explain how they can serve as representation of

mechanical joints of articulated bodies [324]. We follow the steps to transform the resulting

di↵erential algebraic inequalities into an e�ciently solvable linear complementary problem. We

conclude the integration of forces with a brief recap of basic methods of numeric integration,

starting with Euler and Runge-Kutta. We discuss algorithms for e�cient collision detection

and contact point generation, e.g. [493, 327]. We then widen the scope of this lecture unit,

looking at one specific approach to computing incompressible deformable mesh dynamics that

is superior to alternative approaches in terms of e�ciency and accuracy [322]. Finally, we

introduce to real-time particle physics, explaining particle approximation functions based on

the notion of kernel functions [323], culminating in recent advancements in unified real-time

physics simulation [172].

11.2.5 Visualisation Methods

To a large extent, interactive simulations imply some kind of visualisation of the underlying

models and the emerging simulation processes. In this lecture unit, we emphasise the necessity

to consider human perception and information processing when crafting the platform model of

an interactive simulation and we provide an overview of foundational visualisation techniques.

We follow the structure of numerous textbooks on this subject matter and motivate the dis-

cussion on the human vision apparatus by providing several examples of optical illusions [222].

In a 7-step guideline, we establish an idea of the selection of the proper visualisation method

embedded in the context of data acquisition and the intended modes of interactions [494]. Qual-

itatively, visuals can be measured in terms of novelty, informativeness, e�ciency and aesthetics

[103]. We shed light on various scientific, multidimensional, multivariate visualisation methods

[495], before we turn to visualisation techniques that allow for the immersive augmentation

of simulation contents, such as examples of flow visualisation [496], graph-based visualisations

[497], or the transformation of volumetric (4D) data into 3D surfaces [498].

11.2.6 Human-Computer Interaction Techniques

The design of interactive simulations necessitates an interface between human and computer.

This lecture unit provides the necessary background, starting with a brief history of HCI re-
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search [499]. Human interaction requires the user to process and translate sensed information

into motor activity [500]. In general, user interactions can be classified as operations of selec-

tion, manipulation, navigation, and system control [486]. As any other design task, the design

of interactions is the result of a tradeo↵ between multiple goals and constraints [20]. We present

a top-down approach to designing interaction scenarios that starts with the definition of an ap-

plication’s requirements and arrives at individual interaction tasks. We have a brief look at

multimodal approaches, e.g. a↵ective, perpetual, attentive, and enactive interfaces [501], and

we explore the modes of interaction of an embedded multimodal prototype game [502]. We

quickly step through established and emerging immersive hardware technologies, including de-

vices of motion sensing and object tracking capabilities. We convey a general understanding for

the hard latency limitations of interaction hardware and we provide recipes for rather general

issues that arise in real-world sampling, i.e. noisy sensing and the state estimation problem

[490, 486].

11.2.7 Discrete-Event Simulation

In this lecture unit we provide an overview of computational representations as well as modelling

and simulation approaches. We start out with explaining the basic terminology of discrete-event

stimulation (DES) in the context of previous lecture units, especially those described in Sections

11.2.1 and 11.2.4 [503]. To this end, hybrid simulation and combined simulation concepts are of

great importance. We roughly trace the history of this seminal field in terms of DES software

packages and languages [504]. Three ‘world views’ on DES ( event scheduling, activity scanning,

and process interaction) serve as the starting point for our venture into historic approaches.

We meticulously describe the elements of a DES and provide a glimpse at charts already used

for engineering DES back in the 1960s. These diagrams ( activity cycles, wheel chart, flow

charts) are our point of departure towards other computational representations commonly used

for modelling and simulation: Finite state machines, UML transition diagrams, Petri nets

[505], artificial chemistries [337], cellular potts [506], cellular automata [507], random boolean

networks [341], boids [399], L-Systems [508], swarm grammars [3], and the general approach of

agent-based modelling [55, 53].
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11.2.8 Acceleration Algorithms

Low latency requirements of the interaction interface (Section 11.2.6) as well as the desire to

serve large, complex models for interactive exploration at real-time demand for the utilisation of

sophisticated acceleration algorithms. Computer graphics and real-time physics are currently

occupying this niche and this lecture unit aims at exhibiting their commonly used, highly

e�cient approaches [489].

It is divided into four parts: First, we focus on bounded volume hierarchies (BVHs) and binary

space partitioning trees (BSPs). While BVHs are built bottom-up based on bounding volumes

that enclose geometries or other bounding volumes recursively, BSPs are generated top-down by

recursive division of the simulation space. We also provide guidelines to coping with (a) mobile

and (b) deformable objects [509, 510, 511]. Second, we explain di↵erent culling techniques

which ensure that graphical objects are not pushed through the rendering pipeline (Section

11.2.3), if their contributions to the final rendering are marginal or not existing. Examples are

surfaces that lie outside of the view frustum, those that are hidden behind objects, or those

that are so far away from the camera that they could hardly be seen on the screen. Third, we

present approaches that lower the level of detail (LOD) of the rendered objects to the match

the actual needs—as opposed to always rendering at the highest possible level of detail [248].

An example of LOD is the number of triangles of discrete geometries which can, for instance,

be selected according to the distance to the camera. We conclude this lecture unit showing

stochastic acceleration algorithms for collision detection.

11.2.9 Dynamic Model Abstraction

Motivated by the outlook on large, multi-scale, multi-representation simulations [287], we tackle

the issue of ever-growing computational complexity by means of dynamic model abstraction

techniques in this lecture unit. Particularly, we focus on adaptive optimisation of agent-based

models, as they can serve as a generic computational representation. Concerning the immense

computational costs running large-scale simulations, we discuss the limitation of di↵erent model

aspects and how they could improve e�ciency. We conclude this investigation with the real-

isation that if we want to model and compute natural systems, we need to consider dynamic
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systems with dynamic interaction topologies (D2S) [19]. In addition to hardware-based solu-

tions (e.g. [512]), we promote dynamic model adaptation. Agent compression identifies and

subsumes clusters of similar agents [513]. The dynamic extension of this approach considers

container agents to maintain similar agents and to o↵er the possibility to remove or add in-

dividuals on demand. Compression managers are responsible for (a) organising the container

agents and their contents, and (b) representing the compressed agents to the remainder of the

model [514]. Taking this idea even one step further, we provide the detailed steps of the self-

organised middle-out abstraction approach [268] and we show its capabilities with respect to a

decentralised, agent-based blood-coagulation simulation [515, 516].

11.3 CoSMoS’ Central Role

The CoSMoS process is introduced right after a general introduction to the course (see Section

11.2.2), as it provides a flexible, yet focussed guideline for all phases of the development of

interactive simulations. In this section, we first detail a way of applying the CoSMoS process to

student projects, following the explanations in [15]. Second, we present a course infrastructure

to realise this approach.

11.3.1 CoSMoS for Interactive Simulation

We discuss the three phases of the CoSMoS cycle (discovery, development, exploration) in

the context of interactive simulation based on the five activities performed during each phase:

scoping, modelling, experimenting, documenting, and interacting.

During the discovery phase, the greatest challenge to the students is the primary need to settle

on an application domain and to define the goals of the interactive simulation, e.g. teaching

contents or providing for a scientific exploration tool. Although the students appreciate the

opportunity to freely chose an application domain for their projects, they seem to be more

comfortable when provided with a theme, for instance biology. The only constraints regarding

their choice is the projects’ evaluation based on the following aspects, which are set to ensure

their usefulness and the comparability.
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Science The model that drives the resultant prototype has to be scientific, i.e. it has to

be based on scientifically published results. A CoSMoS compliant development process

certainly supports this endeavour. In addition, the modelling domain, the validity of

the modelled system, its degree of innovation, and the computational representation and

algorithms used give strong indications for a scientific approach.

Gamification The prototype has to motivate the user to interact and explore the simulation

space. One can try capturing this aspect quantitatively by describing interaction possi-

bilities, user guidance, usage of game elements, and the factors of intrinsic motivation as

referenced in Section 11.2.2.

Complexity Interacting with the prototype should be rewarding in itself, i.e. it should convey

insights with respect to the underlying scientific model. The model complexity defines

the scope of potentially educational contents, given the conveyed complexity considers

the full extent of the underlying model.

Aesthetics An interactive simulation has to be aesthetic, not only to e�ciently convey infor-

mation to the user but also to motivate their involvement. Aesthetics can be promoted

following established design principles, by utilising beautiful visual assets, and by com-

bining them in novel ways.

Any steps towards desirable domain attributes, concrete domains, and even concrete goals

and an application concept, necessitate answering questions about the projects’ criticality,

their limitations, and their measurable success. In the context of interactive simulations, the

answers typically stress the relationship between the software and the user. The utility for

the user, for instance, not only considers a final simulation result but also the benefit of pro-

active participation in the simulation process. Accordingly, limitations are not only considered

regarding the accuracy and e�ciency of the simulation but especially with respect to the degrees

of freedom exploitable by the user and the quality of the communication between the user and

the simulation, including aspects such as clarity and attractiveness. The modelling activity

during the discovery phase is rather limited in the scope of a term-long project. Despite the

abundance of scientific data accessible through online libraries and the large repositories of

computational libraries and tools for numerous scientific domains, comprehending the elements

and their relationships of a previously unstudied field is a rather di�cult task. For this reason,



230 Chapter 11. CoSMoS in the Interactive Simulation Curriculum

and also to provide the necessary degree of autonomy to intrinsically motivate the students, we

allow the students to decide on a concrete domain and goal by themselves; based on supervisory

feedback on a written proposal and classroom presentations with subsequent discussions, the

core ideas can then be quickly translated into first proof-of-concept prototypes. The discovery

phase is decisively shaped by documentation activity—from coarse to fine grained searches for

references and tools, through merging sources, assumptions and ideas into a concept proposal

that includes an early domain model, to creating a first prototype that provides evidence for

the created line of argument.

During the development phase, documentation about the students’ activities is similarly im-

portant. However, to a great extent, it coincides with the development of the platform model,

an accompanying commented code base, and its transcription for a given simulation platform.

To help reduce the burden that a comprehensive interactive simulation project incurs, we di-

minished the scoping activity of the development phase and taught about various tools of

the trade for interactive simulation development—ranging from 3D asset creation over script-

ing and high-level, component based model compositions to utilising third-party plugins and

libraries for the targeted development environments. In frequent presentation and feedback

sessions, we ensured that domain elements were properly represented and domain behaviours

were not directly encoded in the models. Adding instrumentation to the platform model plays

an important role for interactive simulations. This step should closely follow the interaction

concept developed as an extension of the usual domain model, i.e. one that encompasses the

user as a special model element. Nevertheless, the targeted simulation platform may provide

a rather special interaction infrastructure. For example, the ubiquity of mobile, multi-touch

platforms equipped with relatively weak processing capabilities competes with the processing

power, storage capacity, and extensibility of desktop systems. Clearly, any specific interaction

platform demands for individual adjustments of the platform model to realise both the inter-

action and the simulation concept. Experimentation in the development phase begins with the

first prototype supporting preliminary user interactions. At later stages of the development

phase, it increasingly involves feedback from testers not directly involved in the development

work. Beyond honing the visualisation, consistent design, usability and the scalability of their

platform models in terms of parameter settings, numbers of interacting agents, increasing levels

of di�culty and the fine line between balanced, rewarding interaction and user boredom and

frustration.
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During the final stage of the course project, the experimentation phase, the students focus on

logging and analysing user responses to their simulations. To keep the amount of work at a level

reasonable in the context of our course, the students are asked to try each others’ simulations

and to ask their friends and relatives to provide them with some preliminary feedback. This

exposure typically already provides comprehensive insights into the users’ general interest in

the topic, their opinion about model complexity and aesthetics, and whether they think it is

educational. Based on these evaluations, the students are encouraged to hone their software

and to launch more comprehensive online surveys. However, these more rigorous steps are not

mandatory course stipulations. Nevertheless, the gathered preliminary data in combination

with the initial motivation of their projects, the development processes and the implementation

results, serves as an extensive basis for fleshing out their final report. It culminates in conceptual

improvement that could instigate the next development cycle.

11.3.2 Course Project Infrastructure

Above, we already touched upon the students’ deliverables and how their realisation is backed

by the CoSMoS process. Now, we briefly present the logistical infrastructure of the course setup

to support the traversal of the CoSMoS process throughout the term.

During the first lecture, the students are first informed about the course contents and its

stipulations. For the remainder of the lecture, we present and explain several examples of

possible project concepts. Although the students may conceive a project idea completely on

their own, providing examples proved important to communicate the expected scope and the

imparted opportunities. Within ten days’ time, teams of two students need to author a proposal

of their projects. On two pages (ACM double-column format), the students need to motivate,

present and detail their concepts. Hereby, the envisioned user experience plays an important

role as it ties di↵erent aspects of the envisioned simulation together and it implicitly underlines

its goal. From a CoSMoS perspective, the project proposal is part of the documentation activity

of the discovery phase. As such it serves not only as a platform for the students to substantiate

their initial ideas and consistently brush up their findings but also to communicate their concept

to the instructors.

At the time of the proposal submission, a second lecture unit has introduced the general topic
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of the course (Section 11.2.1) and a first tutorial session has familiarised the students with the

development environment that we recommend (in previous years, we recommended Unity3D).

The day after the submission of the proposals, the students are asked to present their concepts

in short 3-minute presentations during the tutorial session. In this way, all the students in the

course would gain an overview of their peers’ projects and learn about new ideas, possibly even

about the usage of previously unknown code snippets, etc. The quick start into the projects

and presentations early in the term help the students build up momentum for their projects. In

fact, until the last few weeks of the term, the students would present the state of their projects

bi-weekly. This fosters a certain sense of togetherness and it ensures guidance to maintain high

productivity and to avoid frustration.

Two weeks before the end of the term, final reports are due (six pages, ACM double-column

format) that should ideally condense the documentation recorded throughout the whole term.

One week later, the students need to submit their projects, including batches of slides for the

final presentations which are given in front of faculty and students of the whole department.

The audience is asked to vote for the best entry in terms of the generic project criteria: science,

complexity, gamification, and aesthetics (Section 11.3.1). A 15-minute brief oral exam at the

end of the term makes sure that the students have learned and understood the diverse contents

of the course and their relationships.

11.4 Select Student Projects

In this section, we present select student projects that were developed in two iterations of our

interactive simulation course. First, we describe some of the outcomes exemplarily. Second, we

shed light on the CoSMoS-driven development process of a specific project.

11.4.1 Examples

During the first iteration of the course, the majority of the students chose “technical systems”

topics such as routing in communication networks, smart cars, and power networks. Figure

11.1(a)-(c) shows according screenshots. The user is tasked to build and maintain power or

communication infrastructures to ensure their proper functionality. In the network routing and
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the smart car example, the user also had to guide the network activity itself by laying out flow

paths of the respective tra�c. Some students also journeyed towards biological themes such as

cellular automata as seen in Figure 11.1(d). Here, a game of life variant served as the basis for a

two-person game with the goal of conquering as much space as possible solely by adjusting the

cells’ rules. During the second iteration of the course, we proactively advertised biological and

natural phenomena as an exciting and multifaceted field to motivate the student projects—yet,

they were still free to take their projects into other directions. As a result, three groups let

their projects revolve around bees (we had not motivated this trend), see Figure 11.1(e)-(g).

In the first one, the user had to guide a bee’s waggle dance to point its peers to the location

of a food source outside the hive. Figure 11.1(f) shows a screenshot of a bee simulation that

focusses on the challenge of gathering nectar and thereby helping flowers pollinate. Lastly,

a complex real-time strategy simulation is presented in which bees need to gather resources,

maintain their hive and defend it against wasp intruders. Other examples included the user-

guided migration of a flock of geese (Figure 11.1(h)) or the establishment of a fine balance of

interdependent inhabitants in a simulated aquarium (Figure 11.1(i)). The interdependency of

species provided the basis of yet another title where a new ant species threatens to overrun a

native species and the user is tasked to maintain a balance by building barriers or proactively

diminishing one or the other ant population (Figure 11.1(j)). Focussing on solitary species, a

squirrel simulator o↵ered the experience of sharing a rodent’s worries: collecting, burying, and

finding enough nuts to survive the winter season (Figure 11.1(k)). The importance of climate

also inspired “Cloud Computing”, where a user was tasked to set the environmental conditions

in such a way that certain weather phenomena such as rain or tornados would emerge (Figure

11.1(l)).

The set of presented examples emphasises the flexibility of the course project in terms of

contents, perspectives and goals of the student project while addressing the project requirements

as outlined above (Section 11.3.1). Next, we dive into one specific project and shed light on

how the CoSMoS process informed its development.

11.4.2 A CoSMic Case Study: “Drink & Drive”

One student team decided on creating a serious game about the negative e↵ects of alcohol on

tra�c participants. They understood that although some accurate simulators exist for this
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(a) Network Routing (b) Smart Cars (c) Power Networks

(d) Cellular Automata (e) Waggle Dance (f) Pollination

(g) Beehive Defence (h) Migrating Birds (i) The Aquarist

(j) Invasive Species (k) Squirrel Simulator (l) “Cloud Computing”

Figure 11.1: Screenshots of interactive simulations developed as student projects in two itera-
tions of the course.
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purpose (e.g. [517]), they don’t provide for a stimulating, engaging experience. At first the

students were hesitant whether their idea was acceptable as it attempted to approach a serious

topic in an engaging, fun way. We encouraged them to try anyway. Findings about games that

had been developed for this purpose, such as [518], further boosted the students’ ambitions.

These preceding titles had disconnected from the actual problem too much, for instance by

assuming a third-person perspective on the driving situation. Quickly, the students realised

that their interactive simulation should fill this gap and make their title “Drink & Drive” both

fun and educational, so that the target group of soon-to-be drivers and young drivers would

engage in and learn about this fundamentally serious topic. The second part of the discovery

phase of their project shed light on actual models of impairment of drunk drivers. Its last part

posed the greatest challenge: Merging the seemingly conflicting concepts of learning about the

severe consequences of drunk driving on the one hand, and the need for user engagement on

the other hand. They achieved this by two means. First, they decided to represent the game

itself at a level of abstraction di↵erent from the e↵ects of alcohol. In particular, the game

implemented widely-known “Mario Kart”-style game mechanics and a simple, cartoonish look

(Figure 11.2(a)), whereas the impairment of alcohol was reflected by realistic e↵ects, including

the deterioration of clear-sightedness, darkening the edges of the vision, attenuating sounds,

and prolonged reaction times (realised by increased simulation speed), see Figure 11.3. Second,

they introduced gamification elements including timed laps and collecting high scores by picking

up precious diamonds from the track (Figure 11.2(b)). However, fundamental game mechanic

to engage the users was invented later during the experimentation activity of the development

phase. The students laid out the development phase very professionally and, together with the

other students, received bi-weekly feedback to stay on track. Knowing that experiments could

yield the key to an engaging user experience, the students tested various parameter settings

of the driving model, its reactivity to the user input, as well as di↵erent interaction modes

between the steered vehicle and the environment. From what they learned they were able to

invent a mechanism to ensure a challenging and well-directed user experience. In particular,

they translated the idea of collectibles on the track to their application domain and positioned

beer cans at certain locations (Figure 11.2(b)). Their uptake would increase the blood alcohol

level and driving would be impaired. The impairments would render it di�cult to complete

a track within a certain amount of time. Given the mechanics of driving, impaired driving,

high-scores and time-laps, the students just needed to find the right balance to finish the
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development phase of their simulation. “Drink & Drive” was voted best entry in the public

presentations at the end of last term’s interactive simulation course. In addition, it stirred a lot

of excitement when it was o↵ered for play as part of the Girls’ and Boys’ Day at our university.

Based on these successes, the students feel that the most fundamental aspect that could drive a

second development cycle would be the port of “Drink & Drive” to mobile devices for reaching

a greater audience.

(a) (b)

Figure 11.2: (a) A first-person default view is reduced to a simple steering wheel dashboard and
a few icons that represent the time left to complete the track (the heart icon in the upper-left
corner), the achieved score (the diamond icon next to the heart icon), and the alcohol blood
concentration (to the right-hand side). (b) Alcoholic beverages and diamonds can be picked up
from the road - the first increases the driver’s blood alcohol concentration, the latter his score.

0.0‰ 2.0‰ 3.3‰

Figure 11.3: The alcohol blood level directly translates to impairments of vision, hearing, and
reactivity.
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11.5 Conclusion and Future Work

In this paper, we presented an experience to adapt, teach and apply the CoSMoS process in a

graduate computer science course on interactive simulation. We first laid out the multifaceted

synopsis of the course before elaborating on the central role of the CoSMoS process in the

context of the students’ term-long projects. Finally, we briefly presented some of the results of

the students’ works and expanded on one of them, exemplarily. The scientific claim, the notion

of self-organising processes with a focus on the interaction of numerous interwoven parts, as well

as the agility of the CoSMoS process lend themselves well for backing interactive simulation

projects.

Although both the results and the students’ feedback have been rather encouraging regarding

the course contents, its layout and its general methodology, we are eager to further improve

several aspects. It might, for instance, be beneficial to have certain activities of the di↵erent

phases of the CoSMoS process take place in groups during the tutorial sessions. Scoping during

the discovery phase has repeatedly proven di�cult to students. An experienced teacher could

guide the process and ensure that multiple options are considered by each group. More generally,

we believe the CoSMoS process could still be more tightly integrated in both the lectures and the

tutorials, by providing an outlook of its application to the lecture units’ contents. For instance,

one could illustrate the application of the CoSMoS phases not only to the project as a whole

but also to individual aspects such as computer graphics and visualisation—from the goals and

ideas of the used assets, the designed environment, over their creation and programming to

experimenting with their parameters.

So far, we have not considered building on the CoSMoS process for evaluating the students’

works or their performances during the exams, except for considering CoSMoS-supported

project criteria (Section 11.3.1). Yet, the students frequently utilised the structure of the

process for classifying and presenting their work. In particular, they frequently referred to its

phases and activities during their bi-weekly oral presentations and let their final project reports

revolve around them. Hence, one research question that remains is whether and to which ex-

tent the individual phases of the CoSMoS process could be coupled a priori with the students’

evaluation.
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Last but not least, the CoSMoS process could be expanded to even better accommodate the

development of interactive simulations. As they are typically designed for learning and training,

an according ‘engagement model’ could, for instance, be an additional, desirable product of

the discovery phase, complementing the domain model. It could comprise learning targets,

explicitly visualised versus implicitly utilised data, the tasks and mechanics of the interfaces

provided for interacting and exploring the domain model, as well as means of motivation, such

as gamification elements. In combination with the domain model, such an engagement model

would provide for a clear conceptual foundation for the development phase.



Chapter 12

A Graph-based Developmental Swarm

Representation & Algorithm

Modelling natural processes requires the implementation of an expressive representation of

the involved entities and their interactions. We present swarm graph grammars (SGGs) as

a bio-inspired modelling framework that integrates aspects of formal grammars, graph-based

representation and multi-agent simulation. In SGGs, the substitution of subgraphs that repre-

sent locally defined agent interactions drive the computational process of the simulation. The

generative character of formal grammars is translated into an agent’s metabolic interactions,

i.e. creating or removing agents from the system. Utilizing graphs to describe interactions and

relationships between pairs or sets of agents o↵ers an easily accessible way of modelling biolog-

ical phenomena. Property graphs emerge through the application of local interaction rules; we

use these graphs to capture various aspects of the interaction dynamics at any given step of a

simulation.

Sebastian von Mammen, David Phillips, Timothy Davison, and Christian Jacob. A

graph-based developmental swarm representation and algorithm. In: Proceedings of ANTS

2010, 7th International Conference on Swarm Intelligence, Series: Lecture Notes in

Computer Science, vol. 6234, Springer Verlag, 2010, pp. 1–12.
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12.1 Introduction

We are interested in modelling complex biological systems at various levels of scale, i.e. from

the biomolecular level [519] to cells [304] to systems [384], etc. Di↵erent levels of resolu-

tion often require di↵erent computational techniques, such as di↵erential equation solvers to

compute physics or fluid dynamics, or engines that execute high-level agent behaviours that

implement rich interaction policies and complex strategies [472]. Independent of the specific

computational approaches that drive the simulation processes, they all rely on state changes,

the principle of digital computation. Furthermore, a system’s state determines the introduced

changes, probabilistically or deterministically. This idea is emphasized in numerous compu-

tational representations such as Markov chains [520] or cellular automata [299]. The state of

a system is generally understood as the states of all its subsystems including their interrela-

tions. Consequently, states and relations are interchangeable terms that provide the condition

for change, or the antecedent for a consequent in a simple If-then rule. A set of probabilistic

rules (like in Markov chain systems) works well to represent the activities of decentralized,

self-organizing swarm agents [229, 288, 230, 384, 409], including swarm-based developmental

systems [378, 3].

Rule-based swarm systems seem to be a good fit to capture biological models. However, there

are several hurdles that make it hard to deploy swarm models in fields outside of computer

science. (1) The predicates and actions that drive the simulations—e.g. the detection of a

chemical signal or the deposition of a particle—depend on the modelling domains and are usu-

ally re-implemented for di↵erent experiments. Still, many of these operations can be abstracted,

parametrically adjusted and reused in di↵erent contexts. The integration of these operations

into a rule-based formalism also makes it possible to utilize functionality from various com-

putational engines such as physics engines or general di↵erential equation solvers within one

modelling framework. (2) Depending on the degree of specificity of a rule’s condition and its

associated actions, a theoretically simple interaction can result in an over-complicated repre-

sentation. A graphical description of the predicates and the associated actions can amend this

issue. (3) As swarm simulations often exhibit complex behaviours, little details—for example

the order of execution and the discretization steps in a simulation—can greatly influence the

outcome. Therefore, we think it is crucial to design models based on a unified algorithmic
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scheme.

We have devised swarm graph grammars (SGGs) to alleviate some of the challenges discussed

above. SGGs provide a graphical, rule-based description language to specify swarm agents and

a generalized algorithmic framework for the simulation of complex systems. Fundamental op-

erations such as creation or deletion of programmatic objects, as provided by formal grammars,

are part of the SGG syntax. Through SGGs we can capture (metabolic) functions at multiple

biological scales, i.e. the processes of secretion and di↵usion [301], or consumption/removal and

production/construction [385], respectively. As a consequence of the graph-based syntax, SGGs

capture the simulation in a global graph at each computational step. Thereby, the continuous

re-shaping of an interaction topology of a dynamic system is traced and interdependencies that

emerge over the course of a simulation are graphically represented.

The remainder of this paper is organized as follows. In Section 12.2, immediately relevant work

in the respective areas of research is presented. Section 12.3 details swarm graph grammars

(SGGs) and their constituents, i.e. swarm individuals, graph grammatical rules, and a general

SGG algorithm. Section 12.4 shows how the SGG formalism is applied in a step by step

manner to retrace a simple boid simulation, wasp nest construction, and directed cell growth

and proliferation. We conclude with a summary and an outlook on possible future work.

12.2 Related Work

Cellular automata (CAs) can be considered the first computational developmental models [340].

CAs revolve around state-based interactions of individuals given a fixed interaction topology.

However, in the emerging discipline of computational developmental systems, the focus shifted

towards constructive expressiveness and thus overshadowed the idea of individual-based mod-

elling. In this section, we briefly review the emergence of CDMs and demonstrate their reunion

with agent-based modelling.

12.2.1 Complex CDMs

Giavitto et al. summarize several approaches to computational developmental models [18]. The

most simple ones are considered to be dynamical systems with sets of state variables determining
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their global states. Structured dynamical systems are more complex; they are dynamic systems

that can be divided into subsystems. Finally, there are dynamical systems with dynamical

structures, abbreviated as (DS)2-systems, for instance a “developing multi-cellular organism”

[354]. In addition, Giavitto et al. describe developmental models as tuples of topology and

formalism. L-systems [392], for instance, describe how individual elements of sequences are

substituted in parallel. Group-based data fields (GBF) [113], on the other hand, operate on sets

of units that are connected with a homogeneous, fixed topology not unlike cellular automata

[340]. Map L-systems [521], similar to random boolean networks (RBNs) [522], promote combi-

natorial topologies on the interacting, or growing, data structures. There are also formalisms

that explicitly integrate the topology of the modelled systems, such as membrane computing

(MC), or P systems [523]. P systems draw their inspiration from membrane structures of cells,

neural cells and tissues. In a more generalized fashion, graph grammars [524] are a means to

integrate topological information into any kind of developmental model. Examples are multi-

scale tree graphs (MTGs) and the modèle géneral de simulation (MGS) that represent changes

of topological collections of units by transformation paths on a symbolic notation [17].

12.2.2 Graph-based CDMs

Kniemeyer et al. have developed relational growth grammars (RGGs) which promise, like MGS,

to be a universally applicable representation of CDMs [525]. They use RGGs as extensions of

parametric L-systems with object-oriented, rule-based, procedural features. In fact, modelling

CDMs by graph grammars, like in RGGs, allows for the expression of all developmental data

structures commonly used in the computational sciences: multisets, strings, axial trees, and

relational structures (edge-labeled directed graphs). Graph grammar-based CDMs can therefore

be considered as a universal modelling language, able to simulate standard L-systems, artificial

chemistries and ecological systems alike. Kniemeyer et al. successfully applied the RGG model

to grow multi-scale models of plants integrating their structure and function [175], and, recently,

to grow architectural models [176]. They also suggested that RGGs could support agent-based

modelling—by interpreting nodes as agents, edges as inter-agent relations, and by driving their

interactions through sub-graph substitutions [174].

Almost 20 years before Kniemeyer presented RGGs, Culik et al. had extended L-systems

with the means to describe plants through graph structures and their growth through graph



12.2. Related Work 243

grammatical substitutions, which were later on referred to as graph L-systems [526]. Shortly

afterwards, Nagl investigated the relationship between graph grammars and graph L-systems,

concluding that graph grammars can be reduced to graph L-systems and vice versa [527]: iden-

tical graphs can be achieved by either sequential graph grammar productions or by parallel

subgraph substitutions as realized in graph L-systems. About another decade later, Linden-

mayer argued that relying on maps instead of graphs bears many advantages, e.g. a clear

method for mapping between the abstract representation and the natural, growing structures

and better performance due to the avoidance of transformations of the representations [528].

Recently, Tomita et al. have presented graph rewriting automata [529], in which lattice-based

CAs evolve into complex networks through the application of production rules that change local

connectivities. Sayama et al. went one step further and considered the local states of a CA to

inform the development of generative network automata (GNA) [530].

12.2.3 Swarm-based CDMs

Developmental systems can be simulated by means of agent-based, decentralized models that

incorporate di↵usion of molecular signals paired with particular protein or cell behaviours [342].

A generic formalism for agent-based models was provided by Denzinger et al. [54, 55] in which

an agent is represented as a quadruple Ag = (Sit, Act,Dat, f
Ag

). An agent Ag can find itself in

any of the situations expressed in Sit. It can perform the actions described by the set Act. Its

internal data areas, i.e. local variables or memory cells, are determined by the set of possible

values Dat. Based on the perceived situation and its internal data values, the agent determines

the next action through a decision function f
Ag

: Sit ⇥ Dat ! Act. This representation is

very expressive and follows the descriptive methodology of many natural sciences in which the

principle of local cause and e↵ect leads to associated emergent phenomena of interest.

Based on these ideas, we have introduced swarm grammars (SGs) that merged L-systems with

an agent-based modelling approach [3]. In swarm grammars, decentralized swarm agents, or

individuals, have the ability to perceive and act in accordance with Denzinger et al.’s agent

definition. In particular, SG individuals can react to their local environment, di↵erentiate,

reproduce, and create structures by depositing construction elements. Albeit the fact that

SGs merge several instrumental biological concepts of developmental, non-linear interaction
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predicateX

predicate Z
(>6)

p = 0.3

Δt = 4
predicateY

predicateX
actionJ

actionK

initialize

Figure 12.1: An SGG rule that queries the reference node itself, other individuals and sets of
interaction candidates, to interact with them, delete some and to initialize a new node.

systems, they do not provide a unified, easy-to-use representation and algorithm that allows

for systematic deployment in other scientific disciplines (as discussed in Section 12.1).

12.3 Swarm Graph Grammars

We present swarm graph grammars as a unified modelling and simulation framework for swarm-

based systems that addresses the challenges outlined in Section 12.1, and provides a unified,

graphical, rule-based modelling language for swarm individuals and a generalized simulation

algorithm. The graphical description renders model dynamics more tangible and translates

local interactions into global, continuously changing interaction networks. We believe that in-

vestigations into the development of these networks, in turn, could reveal quantifiable measures

about emergent global phenomena. We address Lindenmayer’s concerns about the ine�ciency

of graph-based CDMs by a minimalist subgraph matching procedure that only considers star

networks of depth 1 around the corresponding, active reference agent.

12.3.1 Representation

An SGG agent’s behaviour is described by a set of rules (Figure 12.1). Each rule tests a set of

predicates (solid edges on the left-hand side) and executes a set of actions (dashed edges on the

right-hand side) in respect to the acting agent itself (reference node) or other agents. Nodes

represent individual agents or sets of agents. In Figure 12.1, the acting agent is displayed

as an orange node with a black border. Other agents or agent groups are depicted as grey

nodes. The application of the rule is associated with a frequency and a probability. Sets of

predicates can attempt to identify an arbitrary number of agents. The relative location, i.e.
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the two-dimensional coordinates, of the node on the left-hand side of the rule is matched with

its appearance on the right-hand side of the rule. If a node does not reappear on the right-

hand side, it implies that its corresponding agent has been removed. If a node appears at a

location that is unoccupied on the left-hand side, a new node is created. Figure 12.1 shows an

example rule: It is applied with a probability of p = 0.3 at every fourth time step (�t = 4).

One (arbitrarily chosen) node that fulfills predicateX and predicateY is a↵ected by actionJ

and actionK. Also note that a new node is created and is initialized in this rule for which no

reference had existed before. In case there are at least 6 nodes that fulfill predicateZ, they will

all be removed.

12.3.2 Algorithm

A swarm graph grammar SGG = (I,⌅,G
predicate

,G
action

, P ) is a quintuple, where I describes

a set of individuals relying on rules and properties as explained in the previous section. At

the beginning of the simulation, a set ⌅ of axioms, in the form of initialization algorithms, is

executed by (1) selecting and expressing individuals from I, and (2) by assigning initial states

to the newly created individuals. For a homogeneous swarm of nest-constructing wasps1, for

instance, I only has to comprise a single agent description. Having created a su�cient number

of wasp agents, the axioms would assign contextual information such as an initial location

to the individuals. In the main loop of the swarm graph grammar algorithm (Algorithm 1)

two graphs G
predicate

2 G
predicate

and G
action

2 G
action

are subsequently created that merge

the triggered predicates and corresponding actions of the individuals’ local rules. G
predicate

represents the set of possible graphs of individuals interconnected through predicates. G
action

hosts all possible action graphs. Chains of relations among sets of swarm individuals create

semantic topologies for global graph structures that describe the situational context or activity

in the SGG system. Executing the actions of G
action

yields the next simulation state after a

policy P is applied to resolve possibly arising computational conflicts2. Thus, the alternating

update of the graph instances G
predicate

and G
action

based on the swarm individuals’ behaviours

drives the SGG simulation (Figure 12.2).

1See Section 12.4.2 for details.
2The implementation of an e�cient conflict policy P is often di�cult and its execution can be computationally

expensive.
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Algorithm 1 Swarm Graph Grammar: Main Loop

Require: G
predicate

, optional: P
Ensure: alternating computation of G

predicate

and G
action

repeat
compute predicative graph G

predicate

compute action graph G
action

based on G
predicate

apply order policy P to G
action

execute ordered actions of G
action

until simulation is terminated

(a) (b)

(c)(d)

5

3 Swarm Graph Grammars

The swarm graph grammar formalism combines sets of agents with a graph-based repre-
sentation of their interactions. The agent formalism is so tightly interwoven with the graph
representation that it is hard to explain one part without the other one. Therefore, we will
outline the algorithmic framework first, and then explain the intricacies of the agents them-
selves.

A swarm graph grammar SGG = (Gen,�,Gpred,Gperf , P ) is a quintuple, where Gen
contains a set of genotypes for generating new agents. Similar to the information stored
in natural DNA, the genotype encodes an agent’s phenotype. Hereby, the genotype covers
the details of the formal agent definition provided in Section ??. At the beginning of the
simulation, a set � of axioms, in the form of initialization algorithms, is executed by first
selecting and expressing a number of genotypes from Gen, and secondly, by assigning initial
states to the newly created individuals. For a homogeneous boid flock, for instance, Gen
only has to comprise a single genotype. Having created a sufficient number of boids based
on this single genotype, the axioms would assign each boid contextual information such as
their initial location in the simulation space and their initial velocities.

After the initialization routine (Algorithm ??), the main loop of the swarm graph gram-
mar algorithm is entered (Algorithm ??). The SGG algorithm maintains two graphs, Gpred �
Gpred and Gperf � Gperf , where the swarm individuals are represented as nodes, and where
edges denote their interrelationships. Gpred represents the set of possible graphs of agents
interconnected through unary and binary predicates. Gperf hosts all possible graphs that im-
pose performances onto swarm individuals. Predicates and performances take one or two
swarm individuals as parameters. The respective type of a relation is indicated by according
labels or edge colors, where the origin and the tip of a directed edge reference the associated
nodes. Chains of relations among sets of swarm agents create semantic topologies for global
graph structures that describe the situational context, or respectively, the activity in an SGG
system. In fact, the alternating update of the graph instances Gpred and Gperf based on the
individual swarm agents’ behaviors drives the SGG simulation.

Algorithm 1 Initialization Routine
Require: Gen, �
Ensure: added nodes to Gpredicate

express a number of swarm individuals relying on Gen

initialize expressed individuals in the simulation context
add the initialized individuals as nodes to Gpredicate
start the Main Loop

Algorithm 2 Main Loop
Require: Gpredicate, optional: P
Ensure: alternating computation of Gpredicate and Gaction

repeat
compute predicative graph Gpredicate
compute performance graph Gaction based on Gpredicate
apply order policy P to Gaction

execute ordered performances of Gaction

until simulation is terminated
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The swarm graph grammar formalism combines sets of agents with a graph-based repre-
sentation of their interactions. The agent formalism is so tightly interwoven with the graph
representation that it is hard to explain one part without the other one. Therefore, we will
outline the algorithmic framework first, and then explain the intricacies of the agents them-
selves.

A swarm graph grammar SGG = (Gen,�,Gpred,Gperf , P ) is a quintuple, where Gen
contains a set of genotypes for generating new agents. Similar to the information stored
in natural DNA, the genotype encodes an agent’s phenotype. Hereby, the genotype covers
the details of the formal agent definition provided in Section ??. At the beginning of the
simulation, a set � of axioms, in the form of initialization algorithms, is executed by first
selecting and expressing a number of genotypes from Gen, and secondly, by assigning initial
states to the newly created individuals. For a homogeneous boid flock, for instance, Gen
only has to comprise a single genotype. Having created a sufficient number of boids based
on this single genotype, the axioms would assign each boid contextual information such as
their initial location in the simulation space and their initial velocities.

After the initialization routine (Algorithm ??), the main loop of the swarm graph gram-
mar algorithm is entered (Algorithm ??). The SGG algorithm maintains two graphs, Gpred �
Gpred and Gperf � Gperf , where the swarm individuals are represented as nodes, and where
edges denote their interrelationships. Gpred represents the set of possible graphs of agents
interconnected through unary and binary predicates. Gperf hosts all possible graphs that im-
pose performances onto swarm individuals. Predicates and performances take one or two
swarm individuals as parameters. The respective type of a relation is indicated by according
labels or edge colors, where the origin and the tip of a directed edge reference the associated
nodes. Chains of relations among sets of swarm agents create semantic topologies for global
graph structures that describe the situational context, or respectively, the activity in an SGG
system. In fact, the alternating update of the graph instances Gpred and Gperf based on the
individual swarm agents’ behaviors drives the SGG simulation.

Algorithm 1 Initialization Routine
Require: Gen, �
Ensure: added nodes to Gpredicate

express a number of swarm individuals relying on Gen

initialize expressed individuals in the simulation context
add the initialized individuals as nodes to Gpredicate
start the Main Loop

Algorithm 2 Main Loop
Require: Gpredicate, optional: P
Ensure: alternating computation of Gpredicate and Gaction

repeat
compute predicative graph Gpredicate
compute performance graph Gaction based on Gpredicate
apply order policy P to Gaction

execute ordered performances of Gaction

until simulation is terminated

step
0
1
2
...

Figure 12.2: Subsequent computation of (a) G
predicate

and (b) G
action

yield (c) the next simu-
lation state. The grey arrows from (a) to (c) relate nodes to their contextual impact. (d) The
simulation process is shown as a computation pipeline.
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move

p = 1.0

Δt = 1

acceleratesees p = 1.0

Δt = 1

(>0)

movement acceleration

Figure 12.3: Two rules to describe a boid agent’s interaction behaviour.

12.4 Swarm Graph Grammars in Action

In this section we present three computational models realized with the SGG framework. We

retrace (1) a simple boids simulation [1], (2) the stigmergic construction behaviour of the

Chartergus wasp [2], and (3) cell proliferation induced by a set of growth factors.

12.4.1 Boids

In order to specify a standard boid flocking simulation [1], we use a swarm graph grammar

SGG
boid

= (I
boid

,⌅
boid

,Gboid

predicate

,Gboid

action

, P
boid

). The sole individual i
boid

2 I
boid

contains several

weights for flocking urges, parameters to determine a field of perception, as well as boundaries

for the maximal flight acceleration max
accel

and velocity max
vel

. ⌅
boid

generates a homogeneous

set of swarm individuals that are initialized with a random position �!p and velocity �!v . As no

interaction conflicts arise, the policy P is empty.

Boids rely on two behavioural rules shown in Figure 12.3. The movement rule continuously

updates a swarm individual’s position in accordance with its velocity. The acceleration rule,

substitutes the predicate sees(u, v) with the action accelerate(u, v). The predicate considers

the reference node’s location, orientation and perceptional field to select a set of interaction

partners in accordance with their respective locations. The action also considers the di↵erence

between u’s and v’s states, including their locations and velocities, and accelerates u accordingly.

For example, u accelerates towards v’s location and it aligns its flight direction. In the example

displayed in Figure 12.4, the boid agents form a cluster over time which is also reflected by

increasingly connected interaction graphs.
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t = 1933

t = 5676

G
predicate

G
action

Agent World

Figure 12.4: Two sets of graphs G
predicate

, G
action

and a visualization of the agent space show
a clustering process in a SGG-driven boid simulation. The boid renderings—triangles oriented
towards their velocity with a conic field of perception—partially overlap due to their strong
alignment urge.

12.4.2 Stigmergic Construction

Theraulaz et al. have translated the nest construction processes of Chartergus wasps into

individual behavioural rules [2]. The rules in Figure 12.5 closely retrace this behaviour3. The

predicates around, below and occupied test the immediate surroundings of the wasp to trigger

comb construction in the remaining rules. Hereby, previously deposited combs of two di↵erent

types (Comb1, Comb2, or Comb⇤ for both) trigger the next placement actions. In addition, a

movement rule as seen in Figure 12.3 moves an individual unconditionally to a random location

in the simulation space. Figure 12.6 shows the development in agent space and correlates the

activating (red) and the constructed combs (green). The rule deployment is shown in a series

of interaction graphs G
interaction

= G
predicate

[G
action

.

12.4.3 Swarm Development

Signalling factors determine the rate of cell proliferation which influence specific morphological

developments [531]. The rules in Figure 12.7 configure cells which grow until they reach ma-

3The lattice-based matrix representation provided in [2] was translated into predicates that test the corre-
sponding spatial relationships.
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(a) floor extension (c) floor template (d) floor initiation

Figure 12.5: SGG rules that retrace the construction behaviour by the Chartergus wasp as
described in [2].

366 968
1091

t = 366 t = 968 t = 1091

Figure 12.6: Agent space and the corresponding interaction graphs of a wasp-inspired construc-
tion process (grey dashed arrows indicate actions, orange ones predicates). At t = 366 a floor
template is constructed (rule (c) in Fig. 12.5). At t = 968 the construction of a new floor is
started (rule (d) in Fig. 12.5). At t = 1091 two floor extensions are performed by di↵erent wasp
agents triggered by the same subset of combs.

turity (predicates not mature and mature). Mature cells that are close to a Growth Factor

increase their internal mitogen concentration which in turn instigates proliferation (modelled

as reset of the acting cell and initialization of a second cell).

Figure 12.8 shows screenshots of the simulation. Tissue cells within the vicinity of a signalling
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not mature

p = 1.0

Δt = 1 grow
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initialize

mitogen

p = 1.0

Δt = 1 reset

grow mature proliferate

Figure 12.7: Three rules to describe a simple developmental process model.

molecule start proliferating. Collision resolution through an embedded physics engine allows

the cells to assemble4. The emerging protuberance is slanted to the right in accordance to the

initial distribution of signalling molecules. However, it is surprisingly symmetrical still, which

could result from a lack of simulated cell polarization.

t = 177 t = 385 t = 695

1

t = 1287 t = 1754 typical interaction graph
(here for t = 500)

Figure 12.8: The proliferation of mature cells (blue: not mature; red: mature) is dependent
on the proximity to growth factors (green). At any time of the simulation, large numbers of
agents are informed by growth factors leading to typically dense but homogeneous interaction
graphs.

4In the given experiment we rely on the Bullet physics engine, http://bulletphysics.org
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12.5 Summary and Future Work

Swarm graph grammars are a modelling and simulation framework that provides a universal

graph-based representation for swarm-based developmental systems. Besides metabolic oper-

ations, i.e. the creation or removal of agents, the semantics of agent relations are not part

of the framework. The agents’ abilities have to be implemented in the form of predicates

and actions. The agents’ rule sets (behaviours) drive the simulation processes and they are

immediately reflected in the interaction graph of a simulation. As examples, we used SGGs

to simulate boid flocking, stigmergic wasp nest construction, and growth and proliferation in

cellular morphological processes.

We are currently working on several aspects to improve and harness the utilization of swarm

graph grammars. The application of the framework has led to many refinements in respect to

the formalism and the algorithm. However, in order to render modelling with SGGs accessible,

especially to non computer scientists, we need to collect feedback from interdisciplinary mod-

ellers about the shortcomings of the representation, e.g. regarding its visualization, terminology

and logic. In this paper, we have touched upon matching local agent rules with a simulation’s

emerging interaction graphs. We deem this a very promising approach to analyze emergent

phenomena in simulations on the one hand, and to create complex interaction processes with

dynamic interaction topologies on the other hand. Accordingly, systematic investigations have

to be started. We are also working on a slight modification of the SGG framework so that

nodes can encapsulate children and thereby computational or spatial hierarchies can be built.

This would allow for hierarchical modelling as in P systems [523].
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13.1 Introduction

It is well known that generic medical advice and therapy may have adverse e↵ects on the pa-

tient’s health [532, 533, 534] as well as on the health-care system as a whole, see e.g. [535].

The other way round, individualised treatment has been shown to be more e↵ective, less inva-

sive and reducing therapeutic side-e↵ects [536, 537, 538]. As a consequence, the patient would

gain double from an individualised approach to medical treatment. From the technological

perspective, individualised medicine can be supported in di↵erent ways, for instance by making

accurate predictions about the course of a disease or a treatment based on high-fidelity simu-

lation of high-resolution models [88]. It is no less important to convey a comprehensive picture

of the state and the development of a patient’s health, using visual analytics methods [539] and

means of interactive exploration of the physiological processes across the whole human body

[540]. The path towards comprehensive computational support for individualised medicine still

252
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bears numerous challenges, for instance concerning the legal frameworks, technological limita-

tions on-site, or a lack in computational predictive capabilities. Gradually, various pieces are

falling into place that make it possible to retrieve an extensive digital fingerprint of a patient’s

predisposition and his current condition. Independently, the combination of high-resolution

imaging techniques, e.g. based on charged-coupled devices, computerised tomography [541],

or magnetic resonance [542], with the predictive power of large-scale, multi-scale simulation is

paving the road for comprehensive individualised medical prevention and therapy. Big strides

have been made towards this ambitious goal in terms of important stand-alone benchmarks—

for instance in terms of big data analysis [543], predictions at the level of protein interactions

[544], or proteome analysis [545]. Yet, in order to comprehensively harness the potential of a

digital patient, a tremendous need for the integration of diverse technologies remains.

In this chapter, we especially consider the integration of the computational representations

used as well as the computational processes taking place during the phases of system mod-

elling & simulation and exploration & analysis. Our according e↵orts have culminated in

SwarmScript, an approach to interactively model and simulate physiological systems. We have

designed SwarmScript to allow domain experts from the health sciences to translate seamlessly

between biological and computational models. The uniqueness of each component of a model

has to be properly represented, components be organised into subsystems and systems, and

their interactions concerted across all scales. SwarmScript addresses this challenge of large

heterogeneous model domains by means of an interaction-based representation and simulation

algorithm. It provides a networked, hierarchical view of interdependencies and interactions for

model and process analysis. It also enables the amalgamation of extensive model bases into an

optimised approximative model during runtime. As a consequence of the diverse requirements

that SwarmScript has been built on, it can be presented and understood at di↵erent levels: (1)

at the formal, representational level, (2) at the algorithmic level, i.e. the execution model, (3)

at the level of user interaction, i.e. the description and analysis of physiological models, and (4)

at the level of model abstraction. The latter is typically in the hands of the human modeller

but increasingly taken over by automated optimisation mechanisms [121, 516, 515].

For the remainder of this chapter, we focus on the user perspective of SwarmScript which

provides the best conceptual point of entry to our approach. SwarmScript allows a user (a)

to model a particular physiological system and (b) to explore its evolution over time. The
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process of modelling & simulation (M&S) is iterative—once the workings of a particular model,

including its model entities, their parameters and relationships have been understood, the user

might want to either refine his model to better match his interests or to alter it to find out more

about its complexities [16]. In case this tandem of observation and alteration happens seam-

lessly and at a fast pace (at realtime), one speaks of interactive simulation. Visualisation has

been playing an enormous role in making interactive simulations accessible ever since their con-

ception the 1980s [67]. Accordingly, we describe our approach in the light of various renderings

immediately taken from SwarmScript runs. In the following section (Section 13.2), we present

scientific works related to SwarmScript from the field of agent-based modelling & simulation,

focussing on visualisation and visual programming related to SwarmScript. Afterward, in Sec-

tion 13.3, we introduce the basic vocabulary and how to phrase sentences in the SwarmScript

modelling language. This knowledge is put to the task in Section 13.4 where we demonstrate

the application of SwarmScript by tracing a previously published agent-based model of the

secondary human immune response [123]. In Section 13.5, we discuss the current challenges

of SwarmScript and we outline its short-term and long-term potential for accessible M&S of

physiological systems. We conclude this chapter with a short summary of our contribution.

13.2 Related Work

Complex systems can be formalised by means of agent-based modelling techniques, whereas

the systems’ individual parts are represented as (software) agents that interact based on their

states and an internal behavioural logic. As this modelling approach is easily comprehensible,

also for domain experts outside of the realm of mathematics or computer science, it has received

a lot of attention from fields as diverse as economics, the social sciences, and the life sciences

[47, 546, 230]. In this section, we introduce preceding works that nourished the conception

of SwarmScript. It comprises a basic definition of an agent, and introduces aspects of visual

agent-oriented or agent-based programming environments. In particular, it underlines aspects

of the formulation of behavioural rules, it outlines the basic vocabularies used by related visual

agent-based environments next to their execution models, and it briefly touches on di↵erent

ways of agent organisations.
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13.2.1 Agents and their Representation

Agents representing the parts of a complex system have certain properties and behaviours

[472]. The properties typically refer to the data that is stored with an agent, whereas the

behaviours describe the system changes that the agent will introduce in specific situations.

Accordingly, an agent Ag can be defined as a a quadruple Ag = {Sit, Act,Dat, f
Ag

}, whereas
Sit is the set of a possible situations, Act the set of possible actions, Dat represents the set of

the agent’s internal data, and f
Ag

is the agent’s decision function that maps the agent’s states

to its actions [55]. While this definition allows for arbitrarily complex blueprints of agents, our

elaborations focus on reactive biological agents [547] whose behaviours are relatively simple as

they do not communicate with each other directly but they coordinate indirectly by changing

and reacting to the environment. The value of agent-based models across disciplines [548] has

motivated e↵orts towards accessible agent-based M&S frameworks [61]. To some great extent,

their designers have been quite aware of the need for understandable visualisation techniques

[193] and accessible user interfaces [71]. As a result, some concurrent agent-based modelling

frameworks o↵er visual programming interfaces that resemble block diagram environments that

are also found in modelling toolkits such as LabVIEW and Simulink [549, 550]. In the 1990s,

scientists from MIT developed a programmable LEGO brick that allowed to build robots from

LEGO parts [198]. The programmable brick connects sensors with e↵ectors, e.g. bumper sensors

or light sensors with electronic engines. Researchers were quick to develop LEGOsheets, a user-

friendly visual programming environment in which graphical icons representing sensors and

e↵ectors were connected to the programmable brick [199]. The behaviour of the programmable

brick that processed the incoming sensory data and directed the engines’ activity was configured

by means of if-then rules in a separate editor. LEGOsheets is a specialised visual programming

environment based on the more generic AgentSheets framework [111]. Here too, objects are

considered agents whose behaviours are expressed through sets of behavioural rules composed

of basic operators (conditions such as see or stacked as well as actions such as transport or set).

However, neither the application domain nor the application type, e.g. simulations or games, are

predefined in AgentSheets. An application model in AgentSheets is composed of several agents,

whereas not only the active parts of a modelled system (e.g. E.Coli bacteria) are represented as

agents but also reactants such sugar, and even user-interaction elements such as buttons that

activate gravity—an according simulation that predicts the waste production of E.coli bacteria
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in zero gravity is part of AgentSheets’ examples library. For configuring operators, AgentSheets

o↵ers drop-down menus to choose from available parameters and agent types. Hereby, it makes

extensive use of icons that depict spatial relationships and graphical states of the simulation:

For instance, an o↵set dot in a rectangle depicts an agent’s relative position and arrows in

eight directions from that dot refer to its adjacent neighbours. SeSAm is another agent-based

modelling and simulation environment that o↵ers visual programming [196]. Here, the agents’

behaviours are declared in activity graphs, diagrams derived from UML that show the agents’

states and indicate their state transitions. In each state, a list of interactions is performed.

Since an entry in this list can be another activity graph, SeSAm allows the modeller to define

behavioural hierarchies from bottom-up. Some visual programming environments do not model

the control flow implicitly through the connections in a diagrammatic fashion. Instead, they

provide comprehensive sets of basic programming statements, including those responsible for

control flow, as visual jigsaw pieces, whereas fitting pieces imply a syntactically correct sequence

of statements. Examples are LEGO/Logo [551], StarLogo TNG [71], and Scratch [552].

13.2.2 Multi-Agent Organisation

Actor-lab presents an approach to agent-based programming of robotic systems that is slightly

di↵erent from LEGOsheets and its various related software frameworks [92]. In Actor-lab,

several agents share and process the information available to a robot and determine its actions.

Here, input, agents, control events, and output are visually organised in separate views of the

model editor but they are connected with each other to define the flow of information. Typically,

sets of agents receive and process sensory signals or controller events and drive the activation of

e↵ectors. Again, the agents behave according to sets of rules that are exposed when inspecting

the respective model component. The organisation of agents in the Actor-lab environment

emphasises the idea of a team of agents that collaborates to reach a given goal, i.e. steering

a robot. Alternative organisations in multi-agent systems are, for instance, coalitions which

may form, if several agents agree to collaborate on common, temporary (sub-)goals. Groups of

agents may also be organised in hierarchical structures that reflect an order of command among

the agents and emphasise the higher-level agents’ responsibilities as supervisors of lower-level

groups. A comprehensive survey on common organisational structures in multi-agent systems

is provided in [553]. Hierarchical agent organisations are often used to express their spatial
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arrangement, which is of great importance given the fact that interactions happen locally [114].

Hierarchical organisations are also a means to integrate multiple spatiotemporal model scales

[554].

13.2.3 Designing Interactive Agents

The agent-based modelling paradigm has received a lot of attention also from the field of

computer graphics and the entertainment industry. Maya and Blender, for instance, are 3D

modelling environments in which 3D meshes can be crafted and equipped with physical prop-

erties as well as individual behaviours to produce physically realistic and behaviourally mo-

tivated animations [184, 185]. Blender, for instance, o↵ers a visual Logic Editor that allows

to model agents and their behaviours. Although such applications provide means to intro-

duce behaviours, they focus on rendering, and the behavioural mechanisms mostly facilitate

the production of animations or generative, parametric 3D structures. Modelling interactive

agents that can change their environment and be subject to change move into the focus of

attention of frameworks targeting the design and development of games and interactive simula-

tions [186]. Visual programming interfaces are sometimes part of the respective IDEs or can be

added as plugins, as for instance the Antares VIZIO Visual Logic Editor for the game engine

Unity3D [188]. Primarily, these frameworks provide high-level access to rudimentary physics

calculations and computer graphics functions including 3D asset management and scene graph

organisation. As SwarmScript draws from this functionality as well, we have chosen jMon-

keyEngine for its implementation – an actively-maintained, free and open-source Java-based

framework that supports interactive simulation [555].

13.3 Speaking SwarmScript

The development of a domain-specific language promises the basic foundation to integrate

various system models into one comprehensive multi-scale simulation of human physiology, as

outlined in [540]. The standardisation accompanying the modelling process further allows to

deploy automated, self-adaptive model optimisation routines [121]. Its most immediate benefit,

however, can be making computational modelling accessible to domain experts with limited
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knowledge of mathematics or algorithmics. This goal by itself is rather di�cult and it requires

elaborate decisions about which programming elements, i.e. which data structures and which

control flow statements, should be made accessible and in which way. In this section, we recap

the agile design process of SwarmScript, which also entails the description of its most recent

implementation.

13.3.1 Answering Demand: The Design of SwarmScript

In numerous interviews with domain experts from the health sciences who are closely a�li-

ated with our research groups, we inferred that models are described by means of rule-based

behaviours associated to individual biological or chemical agents. This rea�rmed the demand

for agent-based, rule-based modelling referenced in Section 13.2. The translation of verbally

expressed rules into computational statements is not trivial. Considering a rule to consist of a

conditional part and an action, we found that contextual referencing, i.e. referencing specific

or unspecific objects or sets of objects in either or both parts of a rule poses a di�cult task.

Similarly, an agent’s ownership of a behavioural rule or of sets of rules cannot be associated

easily in general.

Graph-based Rule Representation

Motivated by grammatical substitution rules that guide the interactions in developmental sim-

ulation models [3], we were initially pursuing a graph-based approach to the representation of

behavioural rules [556]. As can be seen in Figure 13.1, antecedence and consequence of a rule

were represented as two graphs with star topologies of depth 1, encircling a node represent-

ing the acting agent. Matching the antecedence in the global state graph of the simulation

implied its substitution with the given consequence. The advantage of this representation lies

in (a) the inclusion of the acting agent into the behavioural rule and (b) the clear separation

between querying and altering the state of a simulation. However, this representation needed

considerable modifications to become usable in day-to-day modelling tasks.
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Figure 13.1: One of a set of graph-rewriting rules that describe the proliferation behaviour of
a cell.

The Source-Action-Target Triple

In order to maintain the clear separation of state queries on the one hand and state changes

on the other hand, we introduced a new rule representation, similar to the input-actor-output

triple used in Actor-Lab [92]. In particular, the next iteration of SwarmScript connected chains

of operators (command objects without “needing any detailed knowledge of how the rest of

the program works” [557]) that query the given state of a simulation to action operators that

would introduce changes to the system. We distinguished between two di↵erent semantics of

the chains of query operators: Those that provide data to trigger and to inform state-changing

actions (sources) and those that identify the targets of any of those introduced changes (targets).

Only if both types of query chains delivered valid results, the associated action operators would

be actualised, i.e. their e↵ects be introduced to the simulation. Figure 13.2 (a) shows the

trisection of operators: Source queries that process data and trigger actions are shown on the

left-hand side of the dashed area. Target queries that identify the objects that would be changed

are shown on the right-hand side of the grey area. Actions which cause the change, if both

sides deliver proper results are situated on the dashed strip itself. The Source-Action-Target

representation of SwarmScript also addressed the need for modularisation [558] (see Figure

13.2(b)), scope (preceding calculations could trigger or skip sections downstream in a chain),

and pre-processing data to determine the e↵ected changes. However, although references were

explicitly resolved, the ownership of the coded behaviour was not clearly assignable. In addition,

the strict separation between source and target queries did not mitigate the inconvenience of

potentially redundant expression of references, in cases where sources and targets were identical

(which is often the case).
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(a) (b)

Figure 13.2: Screenshots from the implementation of the Source-Action-Target representation of
SwarmScript. (a) Several operators can be selected (green rubber-band selection) and wrapped
into (b) a high-level operator.

13.3.2 SwarmScript INTO3D

The latest version of SwarmScript, SwarmScript INTO3D, lifts the separation between sources

and target query chains, it introduces loops denominating an iteration variable for wrappers

(now called ‘circuits’), and it allows to join actions into sequences to specify an execution or-

der. In order to establish clarity about the ownership of a behaviour, it puts forwards another

novelty: The behaviour is projected right into the visualisation of the simulated world, logical

circuitry is embedded in the context of simulated physical and geometrical bodies, relationships

are explicitly drawn to potential interaction partners. This projection eliminates the distinction

between modelling environment and simulation space. Figure 13.3 depicts instances of queries

and action operators as well as of circuit operators. The spheres represent the operators them-

selves, the attached cones depict input and output connectors, pointing towards and away from

the operator spheres’ centres, respectively. We decided on spherical operators as they provide

consistent visual cues and interaction surfaces, independent of the user’s perspective in a 3D

modelling/simulation scene. The conic connector shapes intuitively reflect the flow of informa-

tion between operators—as in functional diagrammatic programming environments, the results

of an operator’s execution are passed on to downstream connected command objects, where

they serve as parameter inputs. Action operators drive the simulation process, as they alone

introduce state changes. We visually reflect their important role by depicting them in red.

Query operators, on the other hand, which do not a↵ect the simulation state, are rendered in

less obtrusive yellow shades. Circuits are visualised in blue as to convey their distinct function

of semantically neutral operator containers.
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(a) (b) (c)

Figure 13.3: Instances of (a) query, (b) action, and (c) circuit operators. The spherical shapes
allow for a consistent view in 3D space, the attached cones convey the flow of information
between operators. The depictions include label windows that the user can create clicking
the respective UI elements. Labels of input connectors contain a text field that presents the
currently received input and allows the user to assign a constant value.

Operators are nested and connected by means of simple drag and drop interactions. A com-

plete behavioural rule is phrased as soon as values/connections are provided for all inbound

connectors of an action operator. Figure 13.4 shows a simple example of a random number

query being passed into a log action. In general, connectors may maintain n : m connections,

whereas the data from its n inbound connections would get aggregated into a collection and its

m outbound connections would spread its data.

13.4 A SwarmScript Dialogue

In this section, we present and explore a simple SwarmScript model. Instead of designing an

agent-based biological model from scratch, we rely on preceding work by one of the authors

which traces the secondary human immune response to infection with the Influenza A virus

[304, 384, 123]. Re-constructing an established agent-based biological model, we can direct the

focus of our presentation toward the behavioural logic and model visualisation of SwarmScript

INTO3D.

The domain model itself stages several types of agents (Figure 13.5) that react based on spatial

collisions and internal states. Epithelial cells (Fig. 13.5(a)) that constitute lung tissue are

susceptible to infection by Influenza A viruses (Fig. 13.5(b)). When infected (at 0.1% chance

upon collision with a virus), the epithelial cell is destroyed after an incubation time of 200

time steps and it releases 5 new viruses into its environment. In [123], a comprehensive set of
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(a) (b)

(c) (d)

Figure 13.4: (a) Dragging across an output connector creates a new edge, (b) whose head is
navigated by the user, (c) to be dropped onto an input connector of another operator. (d)
The new connection has established a properly phrased behavioural rule. Therefore, the action
operator now receives and processes input information as seen in the input connector’s label
window.

behavioural constants is presented that reliably retrace the progression of the immune response.

After exposure to the viruses, dendritic cells (Fig. 13.5(c)) that are scarcely spread across the

lung tissue, migrate to the lymphatic system to activate B (Fig. 13.5(d)) and T cells (Fig.

13.5(e)). Some of those mature into cytoxic killer T cells (Fig. 13.5(f)) and destroy infected

epithelial cells, terminating the viral spread. B cells boost the production of antibodies (Fig.

13.5(g)) that attach to the viruses – such opsonised viruses are then destroyed by macrophages

(Fig. 13.5(h)). Long lived B cells hold the key for a fast secondary immune response releasing

great numbers of antibodies as soon as the pathogens are re-entering the system.

In [123], the secondary human immune response simulation was staged in the context of the

whole human body. Aiming at interactive multi-scale simulation of physiological processes,

this context deems all the more important as two scenes were intertwined – the infection of

lung tissue and the recruitment of B and T cells by the dendritic cells in the lymph nodes. In

SwarmScript INTO3D, this visual multi-scale view translates into an algorithmic multi-scale

perspective. Providing the global context, i.e. the human body, one can dive into the simulation

grounds inside the virtual patient’s lungs, and recurse ever deeper into any nested components

and their behaviours (Figure 13.6).

Each visual object that represents a biological agent (Figure 13.5) is augmented with the

according SwarmScript behaviour as seen in Figure 13.7. Floating labels provide clarity about
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(a) Epithelial Cell (b) Influenza A Virus (c) Dendritic Cell (d) B Cell

(e) T Cell (f) Killer T Cell (g) Antibody (h) Macrophage

Figure 13.5: Visualisations of the biological agents that drive the SwarmScript INTO3D simu-
lation of the secondary human immune response to Influenza A.

the operators’ and connectors’ semantics. Configuring the involved operators and combining

them into behaviours works directly in three-dimensional space using intuitive drag and drop

interaction tasks, as shown above in Figure 13.4. Virtual reality provides virtually infinite space

for modelling individual biological agents and multi-scale behavioural modules. In the scope

of this chapter, we can only present a rather limited view on the visually modelled behaviours

(Figure 13.7). Based on a set of primitive query and action operators, the given domain model

has been prototyped: The agents’ behaviours are wrapped in circuit operators, they interact

through connectors feeding information from and to their environment. Individual operators

can be specifically configured and re-used at di↵erent locations, as can be modular behaviours,

for example the “MoveToClosest” operator in Figure 13.7(f), which calculates the distances to

a set of other agents, moves its owner towards the closest neighbour, and yields a boolean flag

that indicates whether it has reached its target (“closeToTarget”). The modelled high-level

operators can be stored alongside primitive operators for convenient reuse and refinement (also

exported as generic XML files). Figure 13.9 shows the according selection window at the centre,

next to the heads-up display menu that allows the user to direct the modelling procedures and

simulation processes at the top and the view for introspecting an operator on the right. Here,

constants could be entered for any inbound connectors, the name of the operator could be

changed to match the semantics assigned by the user, and individual connectors could be

removed or added to circuit operators.
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(a)

(b)

Figure 13.6: Grey spheres indicate the embedded SwarmScript INTO3D agents and their logic.
(a) The lung inside the human body, (b) containing the infected tissue.
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(a) Epithelial Cell (b) Influenza A Virus (c) Dendritic Cell

(d) B Cell

(g) Antibody

(e) T Cell

(h) Macrophage
(f) Killer T Cel

Figure 13.7: Combined visualisation and behavioural logic of the biological agents that drive
the presented SwarmScript INTO3D simulation of the human immune system. In (f), a nested
operator of one of the agents is magnified (yellow overlay).
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t = 1 t = 21 t = 81

t = 91 t = 161 t = 241

t = 311 t = 371 t = 491

Figure 13.8: The secondary immune response simulation initially hosting twenty-five tissue
cells at di↵erent time steps t. The progression shows the initial infection, the reaction of
the macrophages, the di↵erentiation and recruitment of lymphocytes, the viral spread, the
production of antibodies, and the eventual recovery of healthy tissue. Please note that the
behavioural logic described earlier is algorithmically and visually translated into temporary
relationships and interactions (edges) among the agents. At any point of the simulation, the
user can dive into and reconfigure the agents’ behaviours.
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Figure 13.9: The heads-up display for navigating the modelling & simulation phases with
SwarmScript INTO3D (top), for selecting and deploying previously stored operators in the
current scene (centre), and to configure the currently selected operator (right).
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13.5 Discussion

From its graph-based predecessors [556], SwarmScript has evolved into a three-dimensional

modelling and simulation approach. It has consequently been extended to meet demands from

domain experts, thereby becoming increasingly flexible and expressive. It has also established

a close connection between model visualisation and behaviour. However, despite its simplicity

in terms of control flow and modularisation, its novelties have also given rise to new challenges.

On the one hand, there are challenges in terms of the modelling syntax, its support for seman-

tics, the simulation performance, its support for optimisation. On the other hand, there are

challenges associated with visual programming in three dimensions. In this section, we briefly

discuss both directions.

13.5.1 The SwarmScript Language

The goal of SwarmScript is to provide accessible software for developing, presenting and ex-

ploring models of interacting biological agents at multiple scales. It is nurtured by the general

bottom-up perspective on biological and physiological phenomena, see for instance [114] and

[547]. As a consequence, SwarmScript is first and foremost a language that provides the means

to express agent-centric, interaction-based behaviour. It di↵ers from similar, agent-based lan-

guages in numerous ways, for instance regarding its means to connect operators horizontally

and at the same time to allow the construction of modules hierarchically. Only SeSAm ad-

dresses these aspects in a similar context relying on UML-based state diagrams combined with

lists of activities [196]. In contrast, SwarmScript provides a one-stop solution that amalgamates

(a) concrete algorithmic calculations, (b) state-based modelling (via querying and setting state

attributes), and (c) the expression of rule-based behaviours. In order to improve the clarity of

SwarmScript models & simulations di↵erent criteria can be considered to classify its semantics

[559]. In SwarmScript, all variables that are queried or modified can be modelled explicitly. For

instance, the operator HostReference (e.g. in Figure 13.7(a)) provides an explicit reference

to the agent a specific behaviour belongs to. Abiding to a strict guideline for explicit variable

usage, the query-action dualism provides a starting point for a clear axiomatic definition as

only action operators introduce change to the actual system state. In our current implementa-

tion, there are still some primitive operators that are reducible to more basic definitions. For
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instance, the rather basic SetAttribute and GetAttribute operators, which occur frequently

in Figure 13.7, in combination with various arithmetic operators could be utilised to model

a Move operator that changes an agent’s location based on a given velocity. In this way, a

clear extensible definition could be established. SwarmScript’s strength lies in its operational

semantics as the execution of interactions can be meticulously traced during the simulation,

in terms of conditional relationships, subsequent actions, and state changes. Yet, it could be

furthered by the integration of numerous visualisation techniques, including, for instance, a

broadly applied colouring schematic for the agents’ internal states.

13.5.2 SwarmScript Programming in 3D

Currently, SwarmScript-coded behaviour is projected onto a surface parallel to the camera frus-

tum. This simplifies the user interaction through devices such as monitors and mice. E↵ectively

working in three-dimensional virtual space, e.g. placing operators and connecting them, neces-

sitates the utilisation of novel human-computer interaction methods. This can happen through

rendering various depth cues (through shadows and grids on the floor) and projection of the

user’s body posture into the scene [501], or through immersion of the user into virtual space,

for instance, tracking his body and fingers and displaying the scene stereoscopically. The latter

full body virtual reality systems could increase the naturalness of the interaction language of

the SwarmScript INTO3D interface [20]. They would also allow for the natural exploration of

the multi-scale display of the simulated systems—diving in and out of a system, rearranging,

rewiring its components. Making the shaping of 3D form accessible (consider early studies [560]

combined with novel technologies [561]), they could bridge the gap between modelling of form

and modelling of function, and let the bio-agents’ physical shape determine their interactions—

not only at the microscopic protein-shape level but potentially also in terms of variation at

greater levels of organisation, for instance considering variations of organs. Blending between

three-dimensional visualisation and behavioural relationships requires the user to navigate in

three dimensions for the purpose of modelling alone. This by itself bears several challenges.

For instance, the speed of the camera movement relative to the level of magnification has to

be adjusted in accordance with the user’s needs: Diving several levels deep into a multi-scale

model should happen fast, ensuring that the user is aware of the global context. When the user

wants to adjust the camera to capture the synchronised interactions of two neighbouring cells,
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the camera adjustment needs to be very sensitive. When exploring 3D space, it is also impor-

tant to easily travel and to return to specific locations—all these issues need to be incorporated

into a three-dimensional visual modelling and simulation environment as well. Prezi, a vector-

based presentation software demonstrates how such “location”- management functionality can

be implemented in an accessible fashion [562]. Although three-dimensional rendering conveys

a great appeal and naturalness, a hybrid approach to visualisation would be advantageous that

makes the model accessible in di↵erent modes depending on the information sought [563]. The

combination of heads-up displays for navigation and introspection as seen in Figure 13.9 al-

ready addresses the need for hybrid display modalities to a very limited extent. Similar to the

rich options provided by visual analytics [539], increasing the number of modelling modalities

might prove useful in the context of SwarmScript-based models.

13.6 Summary

In this chapter, we provided some background in agent-based modelling and visual agent-based

programming, emphasising the often underrated feature of agent interactivity. We then fa-

miliarised the reader with the foundational challenges SwarmScript has been addressing since

its inception—starting from graph-based behavioural rules over source-action-target triples to

INTO3D. Finally, we demonstrated the mechanics of SwarmScript INTO3D retracing an agent-

based model of the secondary human response to Influenza A infection. Based on these elab-

orations, we discussed the achievements of SwarmScript INTO3D and immediate leeway for

its improvement. SwarmScript represents an approach to accessible modelling and simulation

of biological agent-based systems. It o↵ers an expressive model representation that originates

from a spatial, interaction-based modelling mindset. SwarmScript INTO3D bridges the gap

between modelling and simulation spaces, making every model aspect accessible during sim-

ulation, providing a truely interactive simulation experience. The design of SwarmScript has

been motivated by the needs of a multidisciplinary enterprise. Input from domain experts

(teachers, scientists, and practitioners) from the health sciences has informed its evolution, as

has research into agent representation, visual programming, and interactive simulation. As a

result, it integrates technologies and concepts from a diverse range of disciplines to take the

unification of system modelling and simulation one step further towards teachers and students

in the health sciences as well as doctors, health-care personnel, and patients. j
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Swarm Grammars GD:

Interactive Exploration of Swarm

Dynamics and Structural Development

We present an interactive simulation of Swarm Grammars (SGs). SGs are an extension of

L-Systems, where symbols of the production system are considered agents, whereas the given

production rules determine their di↵erentiation or reproduction. Assigning boid properties to

the SG agents yields spatial dynamics apt to building structures in space and to collaborate

stigmergically. In the presented interactive simulation, we put an emphasis on accessible in-

teractive visuals for shaping the initial configuration of the simulation, to program the agents’

perceptual and productive behavioural abilities, to dynamically drive developmental stages and

to fine-tune visual structural properties such as colouring and scaling of the utilised develop-

mental building blocks. Our system has been successfully deployed to promote swarm dynamics

and developmental processes as important aspects of Artificial Life in a playful way. We present

results from deploying the simulation in the context of an event to promote STEM research

among high-school girls.

Sebastian von Mammen, Sarah Edenhofer. Swarm Grammars GD: Interactive

Exploration of Swarm Dynamics and Structural Development. In: Proceedings of ALIFE

14: The International Conference on the Synthesis and Simulation of Living Systems,

MIT press, 2014, pp. 312–320.
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14.1 Introduction

Confronted with the challenge of providing an engaging entrance point to Artificial Life research

to young high-school students, we decided on implementing an interactive Swarm Grammar

(SG) simulation [3]. SGs seemed to be an adequate choice, as they integrate aspects of complex

system dynamics—bridging from the behaviour or simple individuals to the emergent properties

of large populations—and developmental processes—yielding unique artefacts that allow to

trace spatial interaction processes over time.

In order to kindle intrinsically motivated engagement [427], the simulation was devised to (a)

establish a relationship between the students, the software and its artefacts. (b) We had to

provide accessible means to defining rules and configuring agents so the students could challenge

their competence in the actual simulation processes and explore the outcome of their high-level

programming ingenuity. (c) The intensity of the students’ explorations and design e↵orts has to

result from their voluntary engagement. Accordingly, the simulation provides an open-ended,

directly manipulatable playground environment that is freely and widely accessible as a public,

WebGL-driven website1.

In the remainder of this paper, we present the following aspects of the project. In the next

section, we briefly summarise the key concepts from related works that we utilised in the

agents’ flocking definition and their (re-)production rules. Afterwards, we explain the simulation

concept with an emphasis on its visual programming assets. Before concluding this work with

a brief summary and an outlook on possible future work, we dedicate one section to presenting

select simulation artefacts as well as preliminary user feedback.

14.2 Related Work

Our simulation concept has been developed to support the definition of perception and actua-

tion properties of ‘boid’ agents and the construction, reproduction or di↵erentiation of swarm

grammar agents. The deployed mechanics of user interaction and visual programming tech-

niques that will be outlined in the next section, are a translation of the following, underlying

1
http://www.vonmammen.org/SG-GD/

http://www.vonmammen.org/SG-GD/
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geometrical and grammatical relationships.

14.2.1 Boid Flocking

[1] presented the concept of ‘bird-oids’, or boids. It implements smooth, decentralised steering

of swarms of agents based on several ‘flocking urges’ that emerge from the relationships between

an agent and its neighbours. The neighbourhood is determined by the agent’s radial field of

view (FOV) defined with a maximal distance d
max

and an angle ↵, see the annotated screenshot

from our simulation in Figure 14.1.

Figure 14.1: Perception of a ‘boid’ agent. Agents within its field of view are perceived as
neighbours, those within the ‘Personal Space’ are considered too close, triggering an evasive
manoeuvre.

Neighbours within a minimal distance d
min

are considered ‘too close’ and trigger an evasive

manoeuvre away from their centre ( separation urge). The agent further synchronises its velocity

(heading and speed) with the other neighbours ( alignment urge) and it accelerates towards their

centre ( cohesion urge). Coe�cients of these acceleration urges determine the emergent flocking

behaviour. In addition to separation, alignment and cohesion, we utilised a correspondingly

weighted random vector (random urge) and a global direction vector (direction urge) to steer

the individual agent. The acceleration ~a
i

of an individual i totals its j neighbour-dependent

urges ~u
ij

, scaled by the individual’s weights w
ij

. The agents’ acceleration and flight are kept

within reasonable boundaries by maximal values for acceleration, a
max

, and velocity, v
max

.

For simplicity sake, we chose integration step size �t = 1 to infer the updated position p0
i

of

individual i. The corresponding equation system is listed below; markings denote the sequence
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of variable updates, |~x| denotes the norm and ~̂x the versor of vector ~x.

~a
i

=
X

j

w
ij

~u
ij

~a0
i

= max(a
max

, |~a
i

|)~̂a
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i
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�t

~v00
i
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i
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i

~p0
i

= p
i

+ ~v00
i

�t

In Figure 14.2, all flocking parameters are shown that the user is encouraged to alter. Similarly

to Reynolds’ later extensions [564], we give the user the ability to introduce novel agents, to

change their FOV and flocking weights on the fly and, thus, to interactively guide the emerging

flocks.

Figure 14.2: Boid parameters as displayed to the user and o↵ered for alteration. Changes to
the Field of View parameters are immediately reflected by the neighbourhood visualisation of
the introspected agent.
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14.2.2 Swarm Grammar (Re-)Production

Originally, a swarm grammar SG = (SL,�) was conceived as a combination of a rewrite system

SL = (↵, P ) and a set of agent specifications � = {�
a1 ,�a2 , ...�an} for n types of agents a

i

[3]. The rewrite system SL loosely followed the concept of an L-system with axiom ↵ and

production rules P , as described by [508]. In the simplest form of context-free 0L-systems,

each rule has the form p! s, where p 2 ⌦ is a single symbol over an alphabet ⌦, and s 2 ⌦⇤ is

a word over ⌦. The application of the replacement rule can be conditional, for instance upon

a successful stochastic experiment (with specified probability ✓) or repeatedly over time (with

a specified time period �t).

Agent specifications may include the flocking parameters described above such as the agents’

FOVs and urge weights, as well as characteristic parameters of the geometrical objects they

leave behind during their flight. Figure 14.3(a) shows a representative artefact produced by an

early swarm grammar, emphasising the branching structure emerging from the reproduction

rules SL = {A, {A! BBB,B ! A}} in combination with a moderate separation urge.

(a) (b)

Figure 14.3: (a) An early SG definition emphasising branching [3]. (b) Artefact built by an
extended, stigmergic SG [4].
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Later, the rule representation of Swarm Grammars was extended towards quantitative stig-

mergy [345], which (a) allowed to trigger (re-)production, in case a specific environment is

perceived and (b) to utilise various static building blocks as well as agent progeny as product.

Hence, spatial structures became the outcome of the agents’ behavioural interactions rather

than simply tracking their flight. A structure built by an extended SG is shown in Figure

14.3(b).

14.3 Interactive Simulation Concept

Our application o↵ers several user interaction mechanisms that support the population and

configuration of the simulation space. In order to keep the user interface free from clutter,

we decided to omit certain functionalities altogether, such as the rotation of geometric bodies,

and we stripped the UI of any data that would not immediate benefit the target audience,

such as the bodies’ coordinates. At the backend, too, we pursued a simple but still ambitious

management of agent specifications and geometric templates.

14.3.1 Basic Scene Manipulation

Figure 14.4 shows a close-up of the top-left corner of the main screen. Here, the user can start

and stop the simulation. In the pull-down ‘templates’ menu an agent specification or a static

geometry can be chosen to populate the simulation space. Clicking on any object in the scene

(initially, there is the ground) places the selected template on top—in this way, the user can

stack objects and populate in all three dimensions (Figure 14.5). Click and drag of an object

moves it parallel to the ground. Hovering above an object and pressing the minus key removes

an object (we found that the delete or backspace key is frequently assigned to other tasks in

standard internet browsers).

Right-clicking an object exposes its properties, as seen in Figure 14.5, and allows the user to

change them. Property changes apply to all objects of the same name, which is shown as the

top-most entry in the introspection menu to the right. An alteration of a name triggers the

creation of an according, new template in the ‘templates’ drop-down menu (Figure 14.4). In

this way, the user can create a diverse set of static geometric objects and agent specifications.
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Figure 14.4: The menu of the simulation’s main screen. The simulation process can be started,
feedback about the current simulation step is provided and a template can be selected to
populate the simulation scene.

Figure 14.5: Templates are placed on top of any clicked, existing objects. Properties of objects
in the scene can be introspected and change on right click; an according menu appears in the
upper-right corner of the screen.

Boid flocking parameters, including the field of view, and the (re-)production rules are part

of an agent specification. As we o↵er a visual programming interface to configure some of

these properties, the camera positions itself at a predefined distance from the agent when

introspected. The dolly animation closing in on an introspected agent is shown in Figure 14.6.

14.3.2 Rule Editor

During introspection of an agent specification, alterations of the field of view parameters,

d
min

, d
max

,↵, result in an updated visual representation. This immediate reflection helps

the user relate the parameter values to actual geometric dimensions and to quickly grasp the

variables’ relationships. Yet, the visualisation of the field of view plays another, more important

role.
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(a) (b)

(c) (d)

Figure 14.6: (a) A Swarm Grammar agent placed on the ground. When right-clicked, the
camera automatically positions itself at a predefined distance (b-d).
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Figure 14.7 shows the view of an introspected agent. Production rules can be specified directly

in the vicinity of the agent. In particular, dice, timers, and and arrow-enclosed timers can

be dropped, which represent the abstract rule conditions and associate probability ✓, point in

time t, and time interval �t variables, respectively. Platonic solids and agents that are placed

outside of the introspected agent’s FOV are products of a behavioural rule, those inside are

considered quantitative, stigmergic conditions. Any such stigmergic conditions are fulfilled,

if the according number of objects is perceived by the agent in the neighbourhood or in the

personal space, respectively. For production objects, the minute geometric o↵set from the

introspected agent is taken into account. Their displacement as expressed visually in the rule

determines their relative placement in the simulation, which resolves the issue of potentially

conflicting product placements.

As a consequence of the semantics associated with di↵erently located platonic solids and agents,

their placement and movement are diligently tracked and registered. The red bar towards

the bottom of the screen provides feedback about the user’s programming e↵orts and any

corresponding rule-a↵ecting changes. The grey bar below provides the user with information

about the currently displayed rule, to create new rules, to remove existing ones and to browse

the complete set of rules of the introspected agent (and its namesakes).

14.4 Preliminary Feedback & Example Outcomes

In this section, we introduce the circumstances of the first deployment of the interactive sim-

ulation presented in this paper, Swarm Grammars GD. We provide details on the preliminary

feedback we have gathered and we give examples of the artefacts built in this context.

14.4.1 Girls-in- STEM Programme

The concept was conceived while developing contributions to an entertaining and informative

programme that aims at encouraging girls to develop and follow their passion for Science, Tech-

nology, Engineering and Mathematics ( STEM) at the Faculty of Applied Computer Science at

the University of Augsburg, Germany. As part of this programme, four groups of roughly ten

girls between the ages twelve to fifteen attend four slots of 45 minutes each, o↵ering di↵erent
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Figure 14.7: Introspecting an agent specification, sets of production rules may be visually
programmed. Abstract conditions, stigmergic conditions, and products of the rules can be
placed in the local vicinity of the agents.

contents and activities: ‘Autonomous Vehicles’, ‘Sight- Finder’, ‘Touch-Robots’, and our entry

‘ Artificial Life’.

14.4.2 Aspects of Artificial Life Research

We identified the following aspects of Artificial Life research that our implementation makes

accessible to interested novices in a playful manner.

Similarly to popular simulation environments such as NetLogo [565], Swarm Grammars GD

promotes an agent-based modelling approach. More specifically, it provides direct access, often

supported by visual cues and interactive elements, to the parametric properties and sets of “if-

then”-rules that describe the behaviour of deterministically or stochastically acting, spatially

interacting reactive agents [472]. When occurring in greater numbers, the interaction of such

agents may result in complex feedback cycles, which in turn might lead to emergent phenomena,
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such as flocking dynamics [117] or complex built constructions [229]. The means to directly

program an individual agent or to simultaneously modify all agents of a certain type allows

one to observe and experiment with the relationship between local behaviours and such global

emergent patterns, as for instance portrayed by [298].

As described in the section on Related Work, the interaction mechanisms that individual agents

can perform in Swarm Grammars GD are limited to neighbourhood-dependent boid flocking [1]

and rule-based production as in advanced swarm grammar concepts [3]. Both can be considered

concrete concepts of two important Artificial Life themes, namely collective locomotion and

developmental models. We make the first theme accessible by o↵ering the means to visually

program an agent’s perceptional abilities. It is further promoted as simple construction rules

that merely place single three-dimensional objects behind the agents at each simulated step

e↵ectively trace the resulting flight dynamics, as for instance seen in Figure 14.8(a).

Regarding the latter theme, developmental models, Swarm Grammars GD touches on the as-

pects of production, reproduction and di↵erentiation, whereas these processes are triggered by

the agents’ internal states, e↵ected by timers and stochastic experiments, as well as external

stimuli (see our explanations of the visual rule editor above). Motivating di↵erentiation based

on locally perceived stimuli, such as the presence of a specific construction template or of a

peer of a specific type, enables modelling a mechanism similar to task assignment in social

insect societies [230]. Stimulus-dependent construction e↵orts, on the other hand, allow one

to implement sigmergic lines of communication [566], i.e. indirect communication through the

environment. All elements in Swarm Grammars GD, whether they are agents or built objects,

have a lifespan attribute which determines the respective element’s timely removal from the

simulation (the elements are not removed, if this attribute is set to the value 0). Utilising such

a timed appearance in combination with stigmergic construction and boid-based cohesion, a

simplistic model of Ant Colony Optimisation can be retraced [567].

14.4.3 Presentation Sequence

Despite the intricate modelling options Swarm Grammars GD provide the user with, in the

context of a short introduction to young novices, we directed our introductory STEM session

to Artificial Life to the foundations of agent-based programming and discussed the intuitively
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accessible basics of swarm dynamics, construction and reproduction. After brief examples of

L-Systems [508] and boids [1] and their utilisation as special e↵ect techniques by the movie

industry (schematic slides and movie snippets), we introduced Swarm Grammars SG hands-

on. Following the structure of the above section ‘Interactive Simulation Concept’, we first

explained the main view of the simulation space and basic user interactions to populate it. Next,

we briefly demonstrated the exploration potential merely arising from altering various boid

parameters. Finally, we detailed the composition of production rules (in this order: producing

static geometries, initialising other agent specifications, and adding conditions to the rules).

At this point, each group had approximately 25 to 30 minutes at its disposal for exploring and

design artificial artefacts and swarm dynamics, under guidance and with feedback if desired.

Our o↵er to print out screenshots of the individually generated artefacts was in good demand,

we handed out 24 of them.

14.4.4 Leeway for Improvement

Some weaknesses of the current simulation became obvious during the supervised sessions—

especially with respect to choosing reasonable parameter values, including boid urge weights,

and configuring abstract production rule conditions such as chance or time steps. One could

mitigate the issue of conflicting or ine↵ective boid parameter sets by o↵ering several presets

such as the ones evolved by [376]. Regarding conditional values, if one does not want to

drastically limit the expressiveness of rule compositions, warnings could be issued that hint

at potentially unreasonable parameters. For instance, agent multiplication at high frequencies

quickly exhausts the host computer, if the maximal life span of the agents is relatively high.

While exploring, one student asked how one could program the cubes (as opposed to the agents)

to reproduce themselves. This question made clear that the distinction between producing

agents and static geometries is arbitrary, not necessary, and possibly not even beneficial for the

sake of functional distinction. At least one could expand the computational representation and

nullify this rigid distinction. Other, more frequently asked questions were related to increasing

the diversity of templates: although creating new templates by entering new names was quickly

understood, this mechanism seemed to be too lengthy for supporting the creative diversity in

colour and scale some users would have liked to deploy.
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Despite the shortcomings of the current implementation, twelve out of a total of 42 participants

declared our session and the use of Swarm Grammars GD to be the highlight of the whole

introductory programme.

14.4.5 Example Artefacts

Figure 14.8 shows an array of six di↵erent Swarm Grammar artefacts programmed by par-

ticipants of our session. We can identify di↵erent classes of structural complexity based on

the flocking and production rule complexities of the SG agents. With only minor changes to

the default boid flocking parameters (see Figure 14.2) and continuously dropping geometries,

swarm motion is captured by the built artefacts (Figures 14.8 (a-c)). Agents with distinct con-

struction behaviours—either resulting from di↵erentiated reproduction or from interactively

adjusting agent specifications—yield more visually complex structures (Figures 14.8(d-f)).

14.4.6 Perspective Shots

Unfortunately, as the students did not have much time to explore, play and create, their

artefacts were mostly captured from a global perspective, which usually does not emphasise

their appealing peculiarities. Figure 14.9 displays several Swarm Grammar configurations,

snapshots of the emergent generative processes and close-ups of the final products set in scene.

In particular, three di↵erent Swarm Grammars are shown. The first one, with captions subtitled

cloud, works based on a simple, unconditional production rule that traces an upwards-flocking

agent with a cluster of spheres. The twists and turns triggered by the interplay of several

flocking agents (as seen in Figure 14.9(b)) are exalted in the close-up by an upwards perspective

and light shading. The second example deploys two agents, the first one simply flies upwards,

repeatedly creating an o↵spring of a di↵erent kind (rule0
wall

). The latter one is pushing hard

to the right while continuously dropping cubic solids (rule1
wall

) but it is also distracted by its

neighbours and thrown o↵ its path by some randomness. The resulting, aligned traces pave a

solid uneven wall (close-up
wall

); In the third example, a single agent is equipped with two rules,

one to establish a continuous trace (rule0
tree

) and the second one triggering periodic branching

to two sides (rule1
wall

). The repeated branching process (process
tree

) yields a tree-like structure
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(a) (b) (c)

(d) (e) (f)

Figure 14.8: (a-b) Flocking SG agents leaving traces of one platonic solid (red spheres and
blue cubes, respectively). (c) Individuals with a strong directional upwards urge leave a trail
of two solids, golden spheres and o↵set green cubes. (d-f) More intricate and diverse structures
emerge from building e↵orts by heterogeneous agent sets.
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(close-up
tree

).

14.5 Conclusion

In this paper, we presented an interactive Swarm Grammar simulation. It has been conceptu-

alised and implemented in order to engage a young audience in Artificial Life concepts, namely

swarm dynamics and developmental processes. The simulation attempts to intrinsically moti-

vate the users by keeping the learning-curve as low as possible. At the same time, we challenge

the users’ competence by attaining a relatively expressive programmable representation, includ-

ing boid flocking behaviour as well as (re-)production behaviour of Swarm Grammars. The gap

between expressive representation and simplicity is bridged by means of visual programming

interfaces for configuring the simulation space as well as individual agent behaviours.

We exhibited some of the artefacts designed by a number of high-school students at the age of

twelve to fifteen. We suggested several possible improvements to the software based on feedback

by the students but also based on observations during supervised hands-on sessions with the

simulation. We complemented the display of the students’ works by three additional Swarm

Grammar examples that explicitly rely on (a) multiple construction elements in single rules,

(b) di↵erentiated reproduction, and (c) branching production rules.

In order to further the presented work, we suggest to translate all boid parameters into mean-

ingful interactive visuals. For instance, the line-width of arrows representing various flocking

urges could stand for the according, relative weights. Field of View and other visually repre-

sented parameters should be readily manipulatable, and not only be altered by means of textual

GUIs. The maximal Age of an agent could be visualised by projecting a faded out geometry

along its current trajectory. Also, the composition of (re-)production rules could be improved

by relating them to the actual environment: the production objects could be projected on top

of the actual simulation environment in order to facilitate precise definitions of environmental

alterations. Programmatically, we suggest switching from the current, class-based architecture

to a component-based perspective that allows to aggregate behaviours. This would simplify

the template management and provide the flexibility to assign behaviours to arbitrary objects,

as asked for by the students.
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Figure 14.9: (a) An unconditional multi-solids production rule to trace an upwards-flocking
agent. (b) A snapshot of the resulting developmental process, given a small set of initial
agents. (c) A close-up of the final artefact. (d) An agent that flies upwards without considering
any distractions and periodically produces (e), an agent heading to the right and leaving a
cubic-trail behind. Its trajectory is influenced by its neighbours and chance. (f) The resulting
developmental process, and (g) the final artefact close-up. (h) A simple trail production rule,
combined with (i) a periodic branching rule, resulting in a (j) branching developmental process.
(k) The final artefact set in scene with a pixelated 2D style.



Chapter 15

Component-Based Networking for

Simulations in Medical Education

For the purpose of medical education, our research team is creating LINDSAY, a 3-dimensional,

interactive computer model of male and female anatomy and physiology. As part of the

LINDSAY—Virtual Human project, we have developed a component-based computational

framework that allows the utilization of various formal representations, computation engines

and visualization technologies within a single simulation context. For our agent-based simula-

tions, the graphics, physics and behaviours of our interacting entities are implemented through

a set of component engines. We have developed a light-weight client/server component, which

spreads its siblings in the system’s component hierarchy over a wireless or wired network in-

frastructure. In this paper we demonstrate how our client/server component paves new ways

for organizing, generating, computing and presenting educational contents.

Sebastian von Mammen, Timothy Davison, Hamidreza Baghi, and Christian Jacob.

Component-based networking for simulations in medical education. In: IEEE Symposium

on Computers and Communications, ISCC10, IEEE Press, 2010, pp. 975–979.

15.1 Introduction

As health care systems all over the world struggle to provide a↵ordable and comprehensive

care, the need for excellent education and training of medical sta↵ is more important than ever.
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At the same time, emerging digital technologies render it possible to present complex contents

faster and better to large audiences than ever before. In this context, we are developing

LINDSAY—Virtual Human, a project at the intersection of Computer Science, Education, and

Medicine. LINDSAY provides a collection of computational tools for research and learning in

the context of human anatomy and physiology.

As a starting point for this project, we experienced and analyzed lectures in human anatomy

given by distinguished instructors. These investigations led to the conclusion that the mere

projection of a virtual three-dimensional human body in combination with the ability to easily

navigate and label the display could greatly facilitate and improve the learning experience.

Consequently, such an application became the first milestone of our LINDSAY project.

To this end, we devised a component-based framework to make our content presentation plat-

form extensible [292, 291]. Hierarchies of components can combine attributes and behaviours on

di↵erent levels of scale and resolution. They can host information for various visualization tech-

niques (e.g., charts, animations), for interaction interfaces (associated with hardware devices or

software user-interfaces) or for simulations computed in real-time and driven by heterogeneous

computational engines ( physics engines, di↵erential equation solvers, etc.).

In this work, we present the design and implementation of a networking component embedded

into our content delivery system. It enables a range of network topologies and configurations

that can support novel means of active learning in classrooms supported by wireless devices

[568].

The remainder of this paper is structured as follows. Section 15.2 introduces the emerging

technology of virtual human anatomies in learning environments. It also touches upon agent-

based and object-oriented simulation techniques as they are our current focus for the pre-

sented networking technology. We also provide references to previous networking solutions for

component-based architectures. Section 15.3 describes the design and implementation of our

client/server networking component and its integration into the larger component framework

of our LINDSAY Virtual Human system. Section 15.4 describes examples of distributed com-

puting and visualization in the context of content generation and delivery in an educational

environment. The article concludes with a summary and exploration of opportunities for future

work in Section 15.5.
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15.2 Related Work

For more than two decades, scientists have been exploring ways to enhance medical research

and education by way of computer-based renderings of human anatomy and physiology. The

American National Library of Medicine started as early as 1989 with the composition of a

comprehensive imagery database of human physiology, also referred to as the Visible Human

[283]. Since then, these data sets have been inspiring a large number of virtual anatomy projects

for research, patient consultation and education [284].

In the context of education, atlases have been composed that promote the exploration of detailed

anatomical terminology in a proper visual context [285]. Some systems have been further

extended to incorporate data about actual biomedical processes in the human body, for instance

genetic processes [286]. Such systems can be modelled and simulated by means of traditional

mathematical methodologies or as large sets of self-organizing bio-agents, or swarm systems

[288, 289].

Relying on a component-based architecture for a content delivery and generation framework

provides the freedom to combine any of these computational modelling and simulation ap-

proaches [291]. More specifically, a component can be broadly defined as follows [292]:

Component A component’s characteristic properties are that it is a unit of in-

dependent deployment; a unit of third-party composition; and it has no persistent

state.

The design of component-based software architectures has advantages in regard to various appli-

cation domains. Frameworks for (human) collaborative work can be implemented by brokering

groupware components [202]. The coordinated execution of heterogeneous components works

for organizing human collaboration as well as complex code bases that comprise large sets of

interoperable, reusable software components. For example, a component-based augmented real-

ity framework could manage components for user interfaces, tracking or object modelling [203].

Computer games, too, face the challenge of integrating vast numbers of software components,

whether related to contents, providing networking infrastructure or user interfaces [204]. A

tutorial for constructing a component-based framework in the context of Massively Multiplayer
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Online games is provided in [205]. For practical reasons, multi-facetted game units are defined

by aggregating distinct software components rather than by using established methodologies of

object-oriented inheritance [207, 5].

An overview of component-based client/server frameworks is provided in [208]. Sets of component-

based distributed embedded systems facilitate coordinated interactions [293]. Redeployment

of components across a network infrastructure results in improvements regarding service avail-

ability [209]. Alternatively, mobile devices can exchange software components in peer-to-peer

networks in order to address user requests [210]. The exchange of software components in

heterogenous hardware infrastructures might require adaptation of the control over the re-

spective components or of their data. In [294], such an adaptation strategy is presented for

transferring components among devices of varying degrees of computational power, e.g., from

a desktop/server to a set of mobile devices. In particular, adaptation is realized by specific

drivers that serve as middleware to translate the broadcast software components.

15.3 Component-based Simulation & Networking

In our component-based simulation framework, the LINDSAY Composer, a simulation is rep-

resented as a hierarchy of components. Figure 15.1 shows a prototypical component hierarchy

of a simulation. Darker shaded boxes represent nested components at a lower level of the sys-

tem hierarchy. Components may be registered with and interface with various computational

engines. As an example, Figure 15.2 illustrates how components on a higher hierarchical level,

such as the Blood Cell, can aggregate several subcomponents that are registered with their

respective component engines. Here, the Blood Cell component has children registered with

Graphics and Physics component engines.

In particular, a component engine accesses a component’s data, possibly relying on the pres-

ence of various sibling components. State updates of the components drive the computational

processes. As an example, a Physics component engine updates the Transform component

(position and orientation) of the Blood Cell depicted in Figures 15.1 to 15.3 .

Although the aggregation of di↵erent components for individual objects results in a flat func-

tional hierarchy [207, 5], a tree hierarchy facilitates object management in large simulation
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environments. Parent-child relationships, as emphasized in Figure 15.1, are primarily seman-

tically motivated. They can, however, also play a role in the context of certain modelling

representations such as Membrane Computing, where biological systems are described based

on inner-compartmental particle interactions and inter-compartmental particle transfers [523].

In such a case, the component hierarchy in combination with the means of object introspection

can provide the data structure required for a component engine that works across hierarchies.
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Figure 15.1: Components at di↵erent hierarchical levels are defined by the aggregation of their
child components. Usually only the leaves of the tree are registered with respective component
engines.

15.3.1 Client/Server Components

We have embedded our Server and Client components into the simulation’s component hierar-

chy. Thereby, we determine which parts of the simulation should be broadcast over the network,

or where the received components should be embedded in the recipient’s simulation context.

Figures 15.2 and 15.3 show a Server and Client component within the hierarchies of two pro-

totypic simulation contexts—on a server and a client system, respectively. In accordance with

the shaded hierarchy schema introduced in Figure 15.1, the Server component in Figure 15.2 is

parented by a Scene component and is a sibling of a Blood Vessel and a Blood Cell.

On the implementation side, our Client/Server component architecture works as follows. The



292 Chapter 15. Component-Based Networking for Simulations in Medical Education

Server tries to connect with a given Bonjour service name. Once a connection between the Server

and the Client component has been established, the Server component first traverses and then

broadcasts its sibling components. Next, changes to the properties and hierarchical organization

of these siblings are aggregated over each frame of the simulation, and are then packaged and

distributed across the network link. On the other side of this link, the Client component first

creates, then maintains and updates a mirrored set of these components as it receives updates

from the server. These updates also consider structural changes to the hierarchy, including

creating, destroying, and rearranging the mirrored components. In addition to the selection

of subtrees, a Server component can apply predicates to filter its siblings and their children

which results in an arbitrary selection of transmitted and updated components. As an example,

one might only be interested in sending component types that encapsulate spatial and visual

information but do not process the simulation. Another predicate might filter out a set of

components based upon their spatial position within a simulation.

The Client component, on the other hand, skips over the recursive integration of those received

components that would require a component engine that is not provided by the client-side

system. In the example shown in Figure 15.3, a Client component receives and maintains the

Blood Vessel and the Blood Cell components sent by the Server depicted in Figure 15.2. As

the Server component has filtered out all Physics components, the client system only processes

the visualization of the transferred components, relying on the Graphics component engine and

the Transform and Mesh component types.

15.3.2 Technical Aspects

The implemented Client and Server components rely on the Apple Bonjour protocol [569].

A service name is the only information necessary to establish a handshake and a connection

link. Mac OS X Snow Leopard on Mac Pro desktop machines with 2.26GHz eight-core In-

tel processors computed and streamed the physics simulations. Multiple iPhone 3G phones

(16GB and 32GB) and iPod touches (3rd generation, 32 GB) were used as wireless devices.

In our experiments, we measured about 800KB/s data throughput, rendering the presented

configurations more feasible to be deployed on the IEEE wireless standards 802.1g and n, as

opposed to b. The Server component’s filtering method is implemented based on the NSPred-

icate class of the Apple Foundation framework [570]. Changes to components are observed via
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Figure 15.2: A Server component is embedded within the scene of the simulation. It trans-
mits and updates its siblings, Blood Vessel and Blood Cell, across the network. Grey boxes
represent the component hierarchies. Circles denote registered components. Component en-
gines (coloured boxes) consider the registered components in the order indicated by the dashed
arrows. Parts of the diagram were adapted from [5].
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Figure 15.3: A Client component integrates the components it receives as children. In the
given case, the Blood Vessel and Blood Cell are stripped o↵ their Physics component as it was
filtered out by the streaming server in Fig. 15.2.
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the NSKeyValueObserving protocol.

15.4 Example Scenario

The introduced Client and Server components allow for a broad variety of network configu-

rations. In this section, we present an example scenario for the classroom that utilizes these

components in di↵erent ways. Server and Client components can exist on any device in a het-

erogeneous network. Multiple Client and Server components may even exist within the same

component hierarchy on a single device. This raises several interesting possibilities. For ex-

ample, one can have a centralized simulation running on a single powerful machine, with less

powerful devices connecting to this device to only visualize (not compute) smaller portions of

the simulation. Distributed simulation is also possible, with multiple computers computing

di↵erent pieces of the simulation. In another example multiple handheld devices are connected

to a simulation that is run on a powerful shared device, where each handheld controls di↵erent

portions of that simulation.

We developed an example scenario around a physics-based blood clotting simulation. Fig-

ure 15.4 shows a screenshot of the simulation run by the LINDSAY Composer on a desktop

computer. One can see a clot forming over the breach in the vessel wall.

Figure 15.4: Screenshot of a blood clotting simulation run with the LINDSAY Composer. Red
blood cells are streaming through a blood vessel.
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15.4.1 Distributed Computation

In order to increase the scale of the simulation, the introduced network components can be used

to establish a distributed computing network. Figure 15.5 presents a network configuration

in which di↵erent parts of a simulation are computed on di↵erent machines. In addition, one

machine is dedicated to retrieve and aggregate the information of the separately computed parts,

which are then visualized in a single simulation context. Figure 15.5(a) shows a conceptual

diagram of the network configuration: Three Client components load their data into the same

simulation context for visualization. The screenshots in Figures 15.5(b-d) illustrate those three

independent simulations running on separate machines. Figure 15.5(e) shows the resulting

combined visualization in one simulation context.
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Figure 15.5: (a) One computer receives data sent from three other machines and integrates it
into one simulation context. (b-d) Snapshots of the simulation processes on the server machines.
(e) The visualization of the merged simulation data on the client machine.
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15.4.2 Distributed Learning

Currently, a room for demonstration and development purposes is setup for the LINDSAY

project that is similar in size to a medium-sized classroom (ca. 20 students). Simulations of

human anatomy are projected onto a large backlit projection screen. This setup is designed

so that one lecturer can teach the students while guiding them through various simulation

contents. The Server/Client component tandem can, however, add a new dimension of stu-

dent involvement to the classroom experience. In particular, students can connect with their

wireless handhelds, cell phones, laptops or tablets and explore the shared simulation space by

themselves. This means that each student could take a di↵erent perspective of following the

shared simulation. For our example scenario, students could observe the blood clotting from

inside or outside the blood vessel, hop onto a blood cell and follow the action, while the rest

of the class simply join the instructor’s perspective. Alternatively, wireless devices can be used

as remote controls for steering the actual scene presented on the screen—whether an inquiring

student or a guiding teacher controls the simulation remotely would depend on the educational

context and the stage of the class.

Figure 15.6(a) illustrates the network configuration for such a classroom setup. The projected

simulation (top box) streams simulation data to a number of wireless clients. Among them is

an iPod that is used as a remote control (middle box) whose directions are fed back into the

simulation. As complex physics simulations are typically not suited for handheld devices, we

only send the visualization data of the simulation to the iPhone/iPod clients (Figure 15.6(b)).

In Figure 15.6(c), an on-screen joystick is drawn on top of the visualization of the simulation.

It can be used to control the camera on the iPhone. In particular, the virtual joystick can be

used to move the camera forward, backward, left and right. Additionally, the camera can be

rotated by touching on the screen and dragging the fingers in the desired direction—up/down

pitches the camera, whereas left/right rotates the camera around its y-axis.

Since the camera and its transformation is transferred to the workstation, any change to the

camera on the iPhone will change the camera on the workstation. Hence, the camera of the

main simulation running on the workstation can be controlled using an iPhone, which would

typically be used by the course instructor.
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Figure 15.6: (a) A network configuration for an interactive classroom: A shared simulation
is presented on individual wireless devices. Information from one of these devices is fed back
into the simulation. (b) Visualization of the simulation on an iPhone—as described in Section
15.3.1, Physics components are not transferred. (c) On a second iPhone, a virtual joystick (in
the bottom right corner) is used to guide the camera.
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15.5 Summary & Future Work

We introduced the LINDSAY Composer as a generic, component-based simulation platform. Its

primary purpose is the simulation and visualization of complex biomedical systems for teaching

in medical education. We present Client and Server components that can be embedded in the

hierarchical data structure of simulation within the LINDSAY Composer. These networking

components can be easily used to send and receive parts of a simulation over a network. Since

multiple Server and Client components can be integrated into one system, and since they are

able to handle arbitrary component data, complex networking scenarios are possible.

With several examples, we have demonstrated the flexibility and simplicity of using Server/Client

components to implement interesting networking scenarios. These scenarios are designed for,

but not limited to a classroom context. In particular, we showed how a complex physics-based

simulation can be computed on several machines and how the results can be visualized by

one client. Filtering out Physics components from the transmitted simulation data renders it

possible to have complex simulations visualized on wireless devices with limited computational

power. In particular, we stream visualization data from a blood clotting simulation to a set

of iPhones/iPods that are used by students to individually explore a shared simulation. By

adding a Server component to a wireless device, it can be used as a remote control and feed

data back into another system. In an example, we used an iPhone to direct the camera of a

remote simulation.

The combination of a component-based simulation framework and easy-to-use networking com-

ponents allows for a vast number of possible networking scenarios. In addition to the presented

examples, students could use networked devices to simultaneously manipulate the data of a

shared simulation. In this context, the idea of turning iPhones into augmented reality devices

might prove invaluable: depending on the environment captured by an iPhone’s camera, addi-

tional information displayed on the handheld devices could overlay the projected simulation.

Mixed-reality elements could be introduced, for instance, using the overlay technique to display

simulation data in the context of a human body.

In addition to exploring new technological prototypes for interactive classroom settings, an easy-

to-use graphical user interface will have to be provided so that lecturers can quickly design and
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setup distributed simulation scenarios. The Client/Server components should be extended by

an authentication mechanism. This could help to maintain confidentiality about certain course

material, which is required, for instance, in the context of human corpses. Authentication

would also empower the instructor to individualize the learning experience of the students,

e.g., by assigning di↵erent means to manipulate simulation data, or by giving access to di↵erent

supplementary data sets. Associating specialized configurations with handheld devices could

also support group work.



Chapter 16

EvoShelf : A System for Managing and

Exploring Evolutionary Data

Systems that utilize evolutionary computation produce large amounts of data. Quite often, this

data has a convenient visual representation. However, managing and visualizing evolutionary

data can be a di�cult and onerous task. By employing techniques used in photo management

software, we have produced a system that helps to visualize and organize evolutionary data

while retaining a complete record of a simulation. By means of a simple plugin architecture this

system can be extended to import data produced by arbitrary evolutionary systems. We present

the system’s architecture, its features, and we provide a comprehensive example, highlighting

its advantages in applied research.

Timothy Davison, Sebastian von Mammen, and Christian Jacob. Evoshelf : A system

for managing and exploring evolutionary data. In: Proceedings of Parallel Problem

Solving in Nature (PPSN). Springer Verlag, 2010, pp. 310–319.

16.1 Introduction

Evolutionary systems produce large amounts of data. Beyond the obvious data (such as the

genotype and phenotype of an individual), there is a considerable amount of meta-data pro-

duced as well. Such data includes the hereditary data, fitness values, and other attributes of

the evolutionary computation approach being employed.

300
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It is common to manage experimental data by means of a file-system browser, such as the

Finder in Mac OS X, and Windows Explorer in Microsoft Windows. Searching or organizing

individuals according to various criteria is a laborious task in such systems. Consider a system

that organizes the individuals produced by an experiment into sub-directories by generation,

giving each individual its own file containing its genotype, and phenotype, along with meta-data

such as fitness, or genealogy. Filtering these individuals by fitness value would be a di�cult

task with either file-system browser.

An evolutionary system may employ an interface of its own for browsing the data that it pro-

duces. In this case, the visualization procedures and the management of the genotype/phenotype

data are typically implemented specifically for the one evolutionary system. However, the uni-

versality of evolutionary algorithmic approaches renders generic visualization and data man-

agement techniques valuable across various application domains.

In a way, the situation is very similar to managing individual (digitized) image and music

collections. Such libraries can easily consist of thousands of items. A number of applications

have made the organization and management of such data much easier for the end user [571,

572, 573, 574]. We propose a system that can deal with evolutionary data with the same ease

of use and flexibility as provided by these mainstream media management applications.

EvoShelf is an extensible system that allows for the importing and exploration of evolutionary

data from evolutionary systems. It solves the challenge of organizing imported metadata by

providing a navigable, and searchable image-based browser that uses interface design elements

from Apple’s photo and music management software iPhoto [571], and iTunes [572]. Further-

more, it provides a plugin framework for building additional import modules and visualizations.

In Section 16.2 we explore the topic of visualizing data in evolutionary systems. Section 16.3

presents the design of the EvoShelf system and its graphical user interface. It also touches upon

some of the visualization techniques included in EvoShelf, as well as details about its plugin

architecture. In Section 16.4 we use EvoShelf in coordination with an existing evolutionary

system for semi-interactive evolutionary computing, and for analyzing the results produced by

that system. We will conclude in Section 16.5 with a summary of our work, along with possible

directions in which to take it in the future.
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16.2 Related Work

We briefly outline the data management and user-interface approach of various software that

inspired the EvoShelf visualization and management system. Secondly, we outline various

techniques that have been developed for visually supporting computational evolutionary exper-

iments.

16.2.1 Digital Media Libraries

The framework presented in this article was mainly inspired by iPhoto, Apple’s mainstream

photo management application [571]. It is capable of organizing and browsing thousands of

photos. Despite the large amounts of information that it is capable of presenting to the user, it

maintains a very simple and intuitive interface. It consists of two primary views, an organizer

view, and an image browsing view (Figure 16.1(a)). Multiple images, up to and including an

entire library of photos, are displayed in the browsing view. The organizer view is used to filter

this view into subsets of photos, such as those represented by a photo album containing the

user’s favorite photos. As photos are imported into the system they are grouped into events.

Pictures taken during a certain period of time might have all been taken during a vacation and

the respective group of photos could be labeled after the location of the recreational stay.

iTunes is another application from Apple Inc. that manages a large amount of data in a similar

fashion to iPhoto. Unlike iPhoto, whose interface is focused on visualizing and managing photos,

iTunes is targeted towards playing music and organizing large digital music collections. Visual

cover art often decorates individual music files, but the iTunes library is mainly organized

by sorting and searching through textual meta-data such as artist name, music category, or

album name (Figure 16.1(b)). Together, iPhoto and iTunes suggest an interface that combines

visualization and meta-data management techniques that could be very powerful for organizing

evolutionary data.
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(a) (b)

Figure 16.1: The user interfaces of the media management applications (a) iPhoto and (b)
iTunes.

16.2.2 Evolutionary Visualization Techniques

Various data visualization techniques have been presented in the context of evolutionary com-

puting. On the one hand, individuals can be compared at a glance based on their multi-

dimensional genotypes, independent of the respective interpretation or phenotype. On the

other hand, methods of visualization have been developed that capture characteristics of whole

populations, allowing one to visually track the evolutionary process.

Pohlheim, for instance, presented a toolkit of convergence diagrams, 3D line plots, and 2D image

plots, to visualize the evolution of fitness values and other individual attributes. Hart and Ross

introduced a tree-based visualization to trace the ancestry of the best individual produced by

an evolutionary run [575]. Daida et al. unfold genetic ancestry onto concentric circles on a 2D

plane to create a compact and highly scalable visualization [576]. Wu et al. represent genotypes

as sequences of color coded stripes whose colors correspond to di↵erent genes [577]. Keim et

al. designed a system to visualize search queries on a (relational) database [578]. Data items

that match the query most closely are arranged in the center of a spiral arrangement. This

visualization technique can be used to relate individuals in an evolutionary system in arbitrary

ways, e.g. by comparing fitnesses or individual attributes. In [579], Khemka and Jacob have

closely investigated the possibilities to visualize population-based optimization processes at

various levels of scale—from the individual to sets of experiments. They provide an easily

adaptable user interface with various interactive manipulators to explore optimization processes
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across these scales.

16.3 The EvoShelf System

The interface of EvoShelf is divided into three window panes (Figure 16.2). The organization

view on the left-hand side is used for selecting and grouping imported experimentation data

(Section 16.3.1). The user’s selection is shown in the browser view in the center pane. An

inspector view (right-hand side) shows further details about an individual or an experiment.

In addition to importing and inspecting functions, the toolbar at the top of the window gives

access to built-in visualization methods which are explained in Section 16.3.2. Typically, a user

of EvoShelf writes a plugin to import and visualize data for his respective evolutionary system,

if it does not already exist. We provide details about plugins in Section 16.3.3.

EvoShelf makes use of lazy fetching of data. That is, images and attributes of an individual are

not loaded until they are needed (such as when the user scrolls to them). When individuals go

o↵ screen, their data is unloaded. In this way, we have manipulated data sets with over 40, 000

individuals. Conceivably, EvoShelf can work with even larger datasets. To further increase the

scalability of EvoShelf, high resolution images of individuals are loaded on demand—if no zoom

is required, a low resolution image is displayed instead.

Figure 16.2: The graphical user interface of EvoShelf.
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16.3.1 Individuals, Experiments, and Groups

The organizational view to the left of Figure 16.2 is divided into a library section and a groups

section. In the library section, the user can select either Individuals or Experiments. In partic-

ular, the Individuals selection displays the images of all the individuals in the library, whereas

Experiments shows representative thumbnails of all the imported experiments. The user can

browse through the set of individuals of any experiment by hovering with the mouse over its

thumbnail. The individuals of an experiment are revealed when the user double clicks on the

experiment.

The data in the browser view can be sorted or filtered by the experiments’ and individuals’

attributes. Once the user has formed a suitable selection he can save his selection in a group,

which would be equivalent to photo albums or playlists (as in[571, 572]). In Figure 16.2, a

group labelled Interesting is selected, which hosts individuals from multiple experiments that

the authors found of interest. Groups can be organized hierarchically. That is, one can form

groups containing groups. When such a group is selected a union is formed from all of the

individuals contained within the subgroups.

The controls at the bottom of the interface allow the user to remove individuals from a group or

from the library, to sort individuals, to search for individuals according to arbitrary attributes

(such as fitness value or generation), to scale the size of the images displayed, and to change

the display mode. One display mode shows individuals as a collection of images, another one

lists them in tabular format. The latter view is convenient for sorting and searching through

individuals based upon numeric or textual attributes.

One individual is selected in the browser view in Figure 16.2. The image representing the

individual was generated by the evolutionary system used as a test run for EvoShelf (see

Section 16.4). In the given case, a play button (a right pointing arrow) allows one to re-run the

simulation that produced and/or evaluated the selected individual. The button is not shown

if the plugin for the particular evolutionary system does not support this option, and it only

appears when the user hovers the mouse over the image.

Below the images in the browser view in Figure 16.2, blue bars represent the individuals’

fitnesses. The bar is scaled to the minimum and maximum fitness of all the individuals currently
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displayed in the browser view. The higher the fitness, the brighter and longer the bar. No image

is provided for Swarm35 indicating that the genotype data was successfully imported but no

image was found—in the given case, the simulation was terminated before a screenshot would

have been taken.

The inspector view displays several default properties about the imported data, such as the file

name of an individual or experiment. A custom interface for the inspector can be defined via

the plugin architecture (Section 16.3.3).

16.3.2 Built-in Visualization Techniques

EvoShelf employs two basic built-in visualization techniques: star plots of name-value pairs

[579] and FitnessRiver, a derivative of the ThemeRiverTM method, which integrates local nu-

meric values with global trends [6].

A star plot in EvoShelf visualizes a set of name-value pairs as a series of radially arranged line

segments (Figure 16.3(a)). The length of a line segment is representative of an attribute’s value

and it is normalized to the attribute’s maximum value in respect to the selected individuals.

An attribute’s line segment will consistently appear at the same location in a star plot to render

individuals comparable.

The ThemeRiverTM visualization method produces a stream diagram that is read from left to

right. Currents in the stream represent individual themes that occur, grow and decay over time.

Instead of separating equivalent attributes into individual currents of a stream diagram, our

FitnessRiver visualization method stacks the fitness values of individuals on top of each other.

The fitness of an individual is proportional to the width of its current. Di↵erent colors are

used to distinguish between successive individuals. Discontinuing currents indicate the removal

of an individual from the evolutionary process. In the FitnessRiver visualization the x-axis

represents the sequence of generations. A flat baseline is used so that the user has a greater

sense of the progression of the fitness evolution (Figure 16.3(b)).

In Figure 16.3(b) we can see a large jump in the overall fitness at about the middle generation.

When we look closely, we see that there are a few very successful individuals in the previous

generation. We can see how these individuals likely contributed to the next generation. Fur-
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thermore, the majority of individuals in the new generation have noticeably more fitness than

those in the previous generation.

(a) (b)

Figure 16.3: (a) Individuals are comparable based on their star plots. (b) The Fitness-
River visualization shows the evolution of local and the global fitness. It is an adaptation
of ThemeRiverTM [6].

16.3.3 Plugins

A user can define additional import modules, visualization modules, data models, and finally

custom inspector views for custom data models1. A few basic classes are provided for these

modules and models that serve as plugin templates. The importing process, including control

over import dialogue windows, can be adapted and alternative visualization modules can be

subclassed from theEvoShelf visualization view controller class.

The default data model (Figure 16.4) is well suited for evolutionary algorithms (EA) and other

forms of heuristic computation, such as particle swarm optimization (PSO). For instance, each

step in a PSO simulation could correspond to a generation in an EA. This could however,

generate a significant amount of individuals, in which case one might prefer to only import the

final individuals from the system. In order to adapt the data model for di↵erently organized

1
EvoShelf plugins are written in Objective-C and should use the Cocoa API [580].
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Figure 16.4: The default data model for importing and managing EvoShelf data.
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information, the EvoShelf data model needs to be adapted. For instance, the attributes for the

classes EVExperiment and EVIndividual need to be adjusted to fit the given experiment. The

new attributes automatically determine the searching and sorting options in EvoShelf, as well

as the information provided by the inspector view. In case a more elaborate inspector view

is desired, an interface constructed in Apple’s WYSIWG Interface Builder application can be

loaded.

16.4 Example Scenario

In this section, we explore the use of EvoShelf with a preexisting evolutionary system. In

the evolutionary system of choice, Swarm Grammars (SGs) are bred by means of a Genetic

Programming algorithm to produce architectural idea models [345]. SGs are a swarm-based

developmental model in which production and interaction rules guide the movements, construc-

tions and the reproduction of agents in 3D space.

In a subdirectory for each generation, the genotypes are stored as text files and snapshots of

the corresponding phenotypes as images. Fitness evaluations for the individuals are stored in

an additional file. When importing all the individuals, including their image representations

and their meta-data into EvoShelf, the original directory structure is automatically copied into

EvoShelf ’s database.

Figure 16.5(a) shows a set of interesting SG specimens. We want to emphasize that due to

their partially very low fitness values ( swarms 3, 6, 7, and 18), we would have very likely not

inspected these phenotypes without relying on EvoShelf ’s visual browsing functionality. Based

on these undervalued, interesting phenotypes, we were able to improve the fitness function that

drives the SG evolution. In particular, we shifted the geometrical focus of the fitness evaluation

in respect to the SGs’ constructions to better suit the favored ones.

We also used EvoShelf for a semi-interactive evolutionary process by repeatedly selecting and

exporting interesting individuals, modifying the fitness function and parameters to the GA,

breeding their o↵spring for a fixed number of generations and importing the outcome (Figure

16.5).

We discovered that the SG GP evolution usually converged prematurely after at most several
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(a) (b)

Figure 16.5: (a) 20 interesting individuals are selected from an experiment and served as the
initial generation for a (b) follow-up experiment.

hundred iterations. Figure 16.6 shows the FitnessRiver plot over 300 generations. Overall

20, 000 individuals were computed and imported into EvoShelf. We noticed that the overall

fitness of our individuals had stagnated by the 100th generation (there is a very slight im-

provement in fitness past this point). Figure 16.7 confirmed our assumption of over-fitting:

Up to the fitness stagnation at around generation 100, we randomly chose and plotted one of

the ten best individuals every ten generations. For the period afterwards, we plotted one of

the ten best individuals at random every 20 generations. And indeed, the phenotype images

in combination with the star plots reveal a one-sided development, most easily recognizable

by the inverted T-shaped star plots. Upon closer investigation, this similarity corresponds to

the deployed amounts of two out of three construction elements provided to the SG agents

(rods and layers), and the amount of construction elements that were placed outside of the

intended target area. As the latter construction elements reduce the fitness of an individual,

their increase might explain the fitness fluctuation as observed in Figure 16.6.

0 50 100 150 200 250 300

Figure 16.6: The FitnessRiver plot shows stagnating and fluctuating fitness development after
about 100 generations. The vertical lines denotes each 50th generation.
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0 10 20 30 40
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100 120 140 160 180

200 220 240 260 280

Figure 16.7: First, every ten generations, then (2nd half) every 20 generations, a star plot and
phenotype of a randomly selected individual is shown.

16.5 Summary and Future Work

We presented EvoShelf, an easy-to-use application for managing experimental data produced

by arbitrary evolutionary systems. EvoShelf ’s user interface is similar in its simplicity to

mainstream media-browsers. Fast browsing of supplementary images associated with each

specimen or of generic visualizations of the individuals, for instance by means of star plots,

enables the user to retrace and interactively explore vast amounts of data produced evolution-

ary experiments. Storing, retrieving and ordering experimental data is facilitated by a simple

yet powerful search function that considers the specimens’ attributes and meta-data (genera-

tion, fitness, etc.). Hierarchical grouping structures further facilitate the management of large

amounts of experimental data. In addition to the built-in management and visualization meth-
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ods, EvoShelf can be extended by plugins that implement the required import, visualization

or introspection functionalities. According programming templates are provided that can be

easily adjusted or majorly extended, depending on the user’s demands.

We applied EvoShelf on an evolutionary application that breeds Swarm Grammars to gener-

ate architectural idea models [345]. Due to the convenient and fast browsing functionality of

EvoShelf, we have been able to identify specimens that received low fitness values despite their

appeal. As a consequence, EvoShelf helped us to adjust the fitness function of the SG GP

system to better suit our expectations. By means of the visualization techniques that come

with EvoShelf, FitnessRiver and star plots, we have been able to track and investigate an

over-fitting process in our evolutionary runs. Finally, by using the selection and storing capa-

bilities of EvoShelf, we have been able to introduce interactivity into an otherwise autonomous

evolutionary process.

In the future, we would like to add more visualization plugins, as well as extend the current

visualizations. Several improvements are possible in respect to the deployed visualization tech-

niques. For instance, it should be possible to overlay di↵erent individual-based visualizations

as we have done in Figure 16.7. The star plot visualization that we applied should be ex-

tended to improve its readability— possibly by an underlying, grayed out, partitioned circle,

di↵erent coloring schemes, or line strengths. Overall, we found it would be useful to automat-

ically associate representative specimens with global trends, as attempted by the combination

of Figures 16.6 and 16.7. The FitnessRiver visualization could possibly be extended to also

track the application of genetic operators and the course of inheritance. We would also like to

explore importing data from an evolutionary system as it runs. Taking this a step further, one

could also use EvoShelf as the basic user interface for controlling a system that uses interactive

evolution as found in [579].
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Chapter 17

Optimization of Swarm-based Simulation

In computational swarms, large numbers of reactive agents are simulated. The swarm in-

dividuals may coordinate their movements in a “search space” to create e�cient routes, to

occupy niches or to find the highest peaks. From a more general perspective though, swarms

are a means of representation and computation to bridge the gap between local, individual

interactions and global, emergent phenomena. Computational swarms bear great advantages

over other numeric methods, for instance regarding their extensibility, potential for real-time

interaction, dynamic interaction topologies, close translation between natural science theory

and the computational model, and the integration of multi-scale and multi-physics aspects.

However, the more comprehensive a swarm-based model becomes, the more demanding is its

configuration and the more costly its computation. In this article, we present an approach

to e↵ectively configure and e�ciently compute swarm-based simulations by means of heuris-

tic, population-based optimization techniques. We emphasize the commonalities of several of

our recent studies that shed light on top-down model optimization and bottom-up abstraction

techniques, culminating in a the postulation of a general concept of self-organized optimization

in swarm-based simulations.

Sebastian von Mammen, Abbas Sarraf Shirazi, Vladimir Sarpe, and Christian Jacob.

Optimization of swarm-based simulations. ISRN Artificial Intelligence Article ID 365791

(2012), pp. 1–12.
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17.1 Introduction

Agent-based modelling techniques have prepared the stage for the systematic exploration of

complex systems. The interconnection of multiple simple, state-based units, as propagated in

cellular automata [340] or random boolean networks [581], yields complex, a priori unpredictable

but iteratively computable system behaviours. Discretization and confined interaction spaces

have rendered a systematic and comprehensive investigation possible that has provided far-

reaching conceptual insights—most prominently the identification of complexity classes and

the provision of tools for the classification and analysis of complex systems [341, 299].

Taking the alternative route and trying to consider and integrate even minute details unearthed

by natural scientists and amalgamating them into one comprehensive computational model is a

daunting task. Yet, steps in this direction have been successfully taken. Material scientists have

paved the road in the field of multi-scale model integration in order to gain insights into the

properties and behaviours of compound materials [269]. Biomedical researchers have recently

been taking similar approaches that target numerous scales of human physiology—from the

level of gene expression up to a human population [87]. The integration of model data di↵erent

from traditional equation-based systems is also moving forward. Recent trends in develop-

mental simulations, for instance, integrate high-level agent behaviours, such as morphogenesis

or proliferation, and physical environmental constraints [582, 583, 584, 585]. Although these

simulations are typically confined to lattice spaces, often even to two spatial dimensions only,

they show considerable promise in retracing natural phenomena of growth and physiological

development.

Unfortunately, one inevitably faces a trade-o↵ between real world phenomena and the intricacies

of the corresponding models, between the number of interdependent variables and computa-

tional viability—in terms of computational e�ciency and of e↵ectiveness regarding the expected

results. Agent-based models scale particularly poorly with increasing degrees of interaction and

increasing numbers of simulated agents. Due to their numerous advantages, exactly these two

aspects are emphasized in swarm-based models. These large-scale multi-agent models typi-

cally support dynamic interaction topologies, allow the agents to interact spatially, and they

target the transition between local interactions and emergent global e↵ects. The great vari-

ability in swarms not only demands for special diligence to maintain computational e�ciency,
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for instance by reducing the search space for interacting individuals based on preceding simu-

lation states [586]. It also exalts the hardship of formulating and parameterizing the agents’

behaviours—even the execution order of location update and velocity integration in simple

flocking simulations yields fundamentally di↵erent global results [587]. These seemingly two

distinct problems can both be tackled by optimizing the behaviours of swarm individuals.

In this article, we present selected works that show how swarms can be optimized to retrace

global e↵ects on the one hand and how they can be optimized to maintain computational

e�ciency on the other hand. In particular, the remainder of this article is structured as follows.

In Section 17.2 we give a brief overview of select topics around the optimization of swarms

(as opposed to using swarms for the purpose of optimization). Section 17.3 demonstrates how

swarms can be adapted to meet specific expectations. In Section 17.4 we present an approach

how swarm simulations could re-organize themselves during runtime to maintain computational

e�ciency. We conclude with a summary of this article and an integrative outlook on swarm

optimization in Section 17.5.

17.2 Related Work

The work presented in this article is inspired and motivated by several disciplines of computer

science and their applications. Craig Reynolds raised a lot of excitement in the computer

graphics community when he demonstrated the simulation of flocking bird-oids, or boids, at

the SIGGRAPH conference in 1987 [399]. Simple acceleration urges steered the boids in ac-

cordance with their local neighbourhoods through three-dimensionally rendered virtual worlds.

The principles of large numbers of particles attracting and repelling one another in spatial sim-

ulations have also received considerable attention by physicists [95, 588, 94]. In many occasions,

Eric Bonabeau, Scott Camazine and their colleagues built computational swarm models to re-

trace the biological behaviours of social insects [229, 230]. Marco Dorigo, James Kennedy their

colleagues were forerunners to apply computational swarms for the purpose of optimization

[589, 590].
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17.2.1 Evolution of Constructive Swarms

Some of the mentioned scientists emphasized the applications of computational swarms for

visualization or optimization, others focussed their e↵orts on the design of accurate biological

models. Bonabeau et al. for instance, designed agent-based models to examine the nature

of the cooperation of social insects. In models of nest construction, agents deposit particles

triggered by environmental stimuli. Their behaviour was expressed in sets of rules that test

the individuals’ neighbourhood situations. Randomly chosen behavioural rules do not yield

interesting structures. However, the researchers found rule sets that recreated the shapes of the

di↵erent wasp genera’s nests; Epipona, Parabolybia, Stelopolybia, Vespa, Chatergus. Marcin

Pilat later added rule sets for the wasp families Agelaia, Parachartergus, and Vespula [591].

Motivated by the constructive character of these simulations, some of the authors of this article

merged L-systems, formal production systems to generate plant-like geometric structures [338],

with the interaction dynamics of swarms (swarm grammars, [343]). Similar to the work in

which Henry Kwong and Christian Jacob interactively genetically bred novel parameter sets

for boid flock formations [376], swarm grammars were also bred interactively and in immersive

breeding grounds in three-dimensional space [344, 3].

17.2.2 Bottom-up and Cross-scale Modelling

Evolutionary breeding techniques have been used to optimize a vast range of computational

models—from random boolean networks [592] and cellular automata [593] to L-systems [365]

and membrane computing models [473]. Despite their algorithmic and formal universality, the

underlying modelling approaches are designed to reflect special properties of the target systems;

random boolean networks emphasize the interdependencies of genes, cellular automata and L-

systems focus on fixed neighbourhood structures of di↵erentiating cells, whereas membrane

computing models, or p-systems, focus on the processes that occur between distinct tissues.

Computational swarms find applications across scales—from molecular artificial chemistries to

social science simulations—because of their inherently flexible interaction topologies and the

focus on the relationship between local interactions and global e↵ects. Therefore, Nelson Minar

and his colleagues emphasized their multi-scalar properties and promoted a hierarchical design

approach to swarm models [60].
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17.2.3 Learning Hierarchies

First steps toward the design of emergent multi-scale models—where interactions on one level

recursively determine the behaviour of the next higher levels, as opposed to chaining up di↵er-

ential equation systems that operate at di↵erent levels—were naturally taken in the domain of

artificial chemistries. Rasmussen et al. designed a computational model in which increasingly

complex structures emerge exhibiting novel properties—from monomers to polymers to micelles

[10]. Although these experiments clearly retrace the formation of patterns at several levels of

scale, Dorin and McCormack claim that such phenomena are not surprising given the model’s

simplicity. Dorin and McCormack argue that it takes considerably more e↵ort to determine

the novelties at higher levels in the hierarchy [264].

Dessalles and Phan foresaw a system in which detectors would identify emergent patterns in

simulations and subsume the activity of the respective lower level objects [278]. Similarly,

Denzinger and Hamdan introduced a modelling agent that observes the behaviours of other

agents and maps them to predefined stereotypes [279]. Periodic re-evaluations of the agents’

behaviours provided the opportunity to adjust the mappings in accordance with the dynamics

of the system. Not only might the local interaction patterns change over time, but high-level

phenomena might also influence the underlying layers. Lavelle et al. use the term immergence,

or downward causation, to describe the impact of high-level organizations on entities at lower

scales [594]. They postulate that explicit functions must be defined to bridge between micro

and macro levels.

17.3 Guiding Emergence

Part of the fascination and the scientific value of computational simulation lies in the prediction

of emergent phenomena. The driving computation may be based on various representations, e.g.

mathematical equations, logical facts, or rule-based interactions. Numeric, iterative simulations

can also be used to infer plausible underlying models for a given phenomenon, expressed by

means of the utilized representation. Swarm-based simulations are of particular interest as

they are typically setup to bridge the gap between local interactions and global, emergent
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properties and processes1. In this section, we present several approaches to optimize the local

behaviours of swarm individuals in order to retrace predefined emergent phenomena. Hereby,

we rely on evolutionary computation techniques and we distinguish between fixed predefined

target criteria and those that change over time.

17.3.1 Guiding along 2D Surfaces

Inspired by observations of their natural counterparts, computational swarm models are often

represented in two or three spatial dimensions. As the individuals’ interactions depend on and

impact the corresponding, spatially reflected interaction topologies, swarms lend themselves

well for studying emergent phenomena that are graphically representable.

In [595], we showed how a virtual boid flock [1] can be bred so that its individuals maximize

the time spent in predefined two-dimensional areas while flocking. In these experiments (Figs.

17.1 and 17.2), each swarm individual, or boid, is depicted as a triangle that is oriented towards

its velocity. It identifies its neighbours inside of a forward-projected conic field of perception

that is determined by a radius r and an angle ↵. To some extent, a boid accelerates randomly,

however, its neighbours have a major impact on its trajectory. In particular, a boid follows an

urge to align with its neighbours, to flock toward their geometric centre ( cohesion urge), and to

accelerate away from neighbours that are too close. This separation urge is triggered whenever

a neighbour is closer than a given minimal distance. For the given experiment, the alignment,

cohesion and separation vectors are normalized by dividing through the number of neighbours,

whereas the random vector is normalized to a unit-vector. An individual’s acceleration is

computed by the weighted sum of these vectors. As a result, the genotype of a boid comprises

the parameters for the field of perception (r and ↵), the minimum distance d
min

, as well as the

weight coe�cients c
coh

, c
sep

, c
ali

, c
ran

and limit values for both acceleration and velocity, a
max

and v
max

, respectively.

Figures 17.1 and 17.2 show boids that were optimized by means of an evolutionary algorithm

to flock in the tiled areas. In Fig. 17.1(a) the flock breaks up into several clusters to reach

the corners of the simulation space. In a second experiment, the flock formation shown in

Fig. 17.1(b) achieves a high fitness value due to the great similarity between its shape and the

1 Abduction refers to the corresponding logic-based approach to inferring the underlying parts of a model,
whereas the field of inverse and ill-posed problems represents the mathematical, analytical analogue.
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tiled target area. Another specimen that was discovered in the second evolutionary setting is

presented in Figure 17.2. It solved the given, non-symmetrical task utilizing the constraints

of the simulation environment, great dispersion but a great degree of connectivity among the

boids. In Figure 17.2(a) the individuals spread radially from the origin. When repelled from

the edges, the flock breaks into four parts (Fig. 17.2(b)). To the left and to the right, new

clusters form and head back to the world centre (Fig. 17.2(c)), which makes at least one of the

clusters pass across the tiles to the left centre of the simulation space (Fig. 17.2(c) and (d)).

(a) (b)

Figure 17.1: (a) A flock has learned to swarm to the edges of the simulation space. (b) The
flight in formation of a broad stripe maximizes the flock’s fitness when hitting the rectangular
tiles.

In order to breed viable boid parameters for homogeneous flocks, we used a standard Genetic

Algorithm (GA) which implemented: (1) Rank-based selection: 70% for the best 20%, 20% for

genotypes between 20% and 50% of the ranks and 10% probability for the remainder of the

parent population. (2) Recombination for half the o↵spring with multipoint crossover, normally

distributed across the genotype. (3) Mutation of previous genotypes for the remaining o↵spring

with a mutation probability p = 0.2 on single genes. We computed the phenotype fitnesses

based on Equation 17.1. It sums the collisions of boids on all tiles, up to a maximum number of

collisions per tile, over the course of a simulation. m denotes the number of swarm agents, n the

number of tiles, t
sim

the simulation time, and the function c() yields the number of collisions

between swarm individuals and an individual tile n
ind

at time step t. In order to promote a

smooth distribution of agents across the given tiles, the fitness evaluation function considers at

most c
max

agents on one tile. The final sum is normalized by the number of simulation steps

and the number of swarm agents.
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(a) (b)

(c) (d)

Figure 17.2: An evolved swarm relies on interactions with the environment in order to hit a
non-symmetrical tiled area.

f
2D

=
1

t
sim

m

nX

nind=0

tsimX

t=0

min(c(n
ind

, t), c
max

), with c
max

=
m

n
(17.1)

The genotypes of the three presented cases are detailed in Table 17.1. The first one, depicted in

Fig. 17.1(a), yields a high degree of scattered clusters due to the high cohesion and alignment

weights and the narrow perception angle. The third genotype (Fig. 17.2) is a descendant of

the second one (Fig. 17.1(a)). Its cohesion and alignment weights dropped significantly while

its perception radius increased to the maximally possible value. d
min

is greater than the actual

perception radius in all three cases which implies that the separation urge was consistently

triggered by all perceived neighbours.

17.3.2 Guiding through 3D Volumes

In [378, 596], we presented an approach to guiding swarm dynamics very similar to the one

in Section 17.3.1. The model was inspired by work on nest construction in social insects
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Phenotype ↵ d
min

r c
coh

c
sep

c
ali

c
ran

v
max

a
max

Figure 17.1(a) 0.74 90.28 56.16 4.23 1.62 5.0 0.55 6.51 20.02
Figure 17.1(b) 1.29 100.0 33.70 0.40 3.96 4.53 4.16 8.32 13.17
Figure 17.2 3.14 100.0 70.84 0.07 3.25 1.12 3.13 8.91 13.45

Table 17.1: Genotype vectors of the boid flocks shown in Figures 17.1 and 17.2 (rounded to
two decimal places).

[229, 230]. In this model, in addition to following the flocking parameters outlined in Section

17.3.1, environmental stimuli prompted the individuals to place or remove cubic building blocks

in virtual three-dimensional space (gravitation was not simulated, intersecting building blocks

not allowed). The individuals’ construction behaviour was expressed as if-then rules. The

rules’ antecedents would test the existence of up to five building blocks that were positioned

relative to the acting individual. The consequence of each of twenty allowed rules could trigger

the creation or destruction of a building block at specified relative coordinates, or it could

set or reset the acting individual’s point of focus coordinates. If set, the individual would be

accelerated towards the point of focus alongside of the basic boid urges of alignment, separation,

cohesion and some random acceleration. In addition, we also introduced an acceleration urge

toward the ground that would increase with an individual’s height. c
foc

and c
gro

denote the

weight coe�cients for these two additional urges, respectively.

Again, we used a standard GA to breed swarms that were guided by geometrical constraints.

This time, the fitness of a swarm was determined by the ratio of building blocks built inside and

outside of a predefined three-dimensional structure composed of a set of cubes. An initial seed

cube marked the site a swarm’s construction e↵orts would be measured against. Figure 17.3

shows the predefined structures and the swarm-based constructions of two di↵erent experiments.

Instead of multi-point crossover operators, recombination is performed for 40% of the o↵spring

based on a randomly generated two-point crossover mask that preserves pairs of dependent

rules with a greater probability. The number of rules of the o↵spring is limited to the smaller

number of rules of the parents. The parents for all the o↵spring were chosen by means of

fitness proportionate selection. In addition the ten best individuals were always considered

as parents (kBest with k = 10). Mutation is performed per boid gene with a probability of

m
boid

= 0.2, whereas the conditions, the action, and the action parameter (a relative position)

are considered for mutation independently with a probability m
rule

= 0.1. In the evolutionary

experiments, we emphasized the coordination of construction and fixed some of the flocking
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parameters. In particular, d
min

= r = 2.0, ↵ = 2.0, v
max

= 0.5, and a
max

= 0.3. Please note

that for these experiments a di↵erent simulation environment, VIGO [597], was used which

resulted in a spatial scaling factor much smaller than in Section 17.3.1.

(a) (b) (c) (d)

Figure 17.3: Swarm constructions (inner aggregations) are guided by predefined 3D structures
(outer grids).

The construction rule sets of the two independently bred swarms depicted in Figure 17.3 were

dominated by unconditional and conditional rules for cube creation. Each of the swarms also

set and reset the individuals’ focusses (3 unconditional construction rules in (a-b), 4 in (c-d),

and 2 conditional ones in both specimens). In the swarm depicted in Figure 17.3(a-b), the

individuals also unconditionally removed construction elements in a relative location. Further

information about these rule sets can be found in [596].

Phenotype c
coh

c
sep

c
ali

c
ran

c
foc

c
gro

Figure 17.3(a),(b) 0.18 0.06 0.30 0.00 0.14 0.17
Figure 17.3(c),(d) 0.16 0.43 0.16 0.00 0.23 0.12

Table 17.2: Flocking genotypes of the constructive swarms shown in Figures 17.3(a),(b) and
(c),(d), respectively (rounded to two decimal places).

17.3.3 Tracing and Learning Flock Dynamics

The speciality of a swarm is its inherently dynamic interaction topology and the resulting feed-

back on its global behaviour. In [117], we analyzed previously discovered boid flock specimens

[376] based on their interaction topologies over time. We also presented an approach to finding

new flock configurations whose interaction topologies evolved in accordance with predefined
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functions that reflect naturally occurring phenomena such as biological switches and clocks or

timers. In particular, we showed that a step function can be approximated by a flock’s average

neighbourhood degree n̄, if its individuals slowly drift away from one another and that an os-

cillating neighbourhood degree can be established by a pulsating flock. Here, we want to share

the latter example, as its characteristic sequence of phase transitions is especially interesting

in the context of complex simulation research.

As the initial configuration of a complex system may heavily impact the results of a numeric

experiment, we encoded the initial configurations (position, velocity and acceleration) of indi-

viduals as part of a swarm’s genotype, similar to an epigenetic factor. In order to provide a

spatial point of reference, we allow the swarm to urge toward the world centre, o = (0, 0, 0)T

(weighted by c
foc

). This time, we simply configured a Genetic Algorithm with fitness propor-

tionate selection, incremental mutation and multi-point crossover on all numeric values. To

enforce the approximation of a predefined target function, we computed the following fitness

value:f
oscillation

= 1/
�P

40

t=1

|n̄(t)� x(t)|�. Over a period of 40 time steps, the fitness diminishes

proportional to the absolute di↵erence between the target function x(t) and its approximation

n̄(t).

Figure 17.4 shows the neighbourhood function n̄(t) as exhibited by the evolved swarm config-

uration listed in Table 17.3. The oscillation happens as the flock repeatedly expands (Figure

17.5) and contracts (Figure 17.6). Leaps from a plateau to a local maximum, as seen at t = 100,

occur when formerly separated flocks rejoin. Eventually, at t = 1244, the oscillation ends (Fig-

ure 17.4(b)); this is when the agents form a tight cluster and start orbiting around the world

centre. In order to facilitate the identification of flocking patterns, we activated motion blurring

in the renderings.

Phenotype ↵ d
min

r c
coh

c
sep

c
ali

c
ran

c
foc

a
max

v
max

Figures 17.5 & 17.6 2.64 4.12 7.86 0.95 0.53 0.76 0.76 0.36 12.15 7.16

Table 17.3: Evolved swarm parameters that result in the neighbourhood evolution shown in
Figure 17.4. The corresponding flocks oscillate though repeated contraction and expansion
(Figure 17.5).
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Figure 17.4: (a) The average neighbourhood of a flock n̄ approximates a sine function that
it learned until t = 40. (b) At t = 1244, the flock forms a tight cluster and remains in an
equilibrium with n̄ 2 [0.35; 0.45].

(a) (b) (c)

(d) (e) (f)

Figure 17.5: The series of images shows how a swarm in a knot formation expands to two sides.
Eventually, two flocks emerge and head into opposing directions.
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(a) (b) (c)

(d) (e) (f)

Figure 17.6: (a-b) Two flocks head toward the world centre from opposing directions. (c) They
avoid each other at first. But soon they closely interact again. (The images were adjusted to
fit both flocks, the zoom was slightly increased once for capturing (d-f)).
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17.3.4 Parameter Optimization in a Heterogeneous Predator-Prey

Model

As a test bed for learning the behavioural parameters of heterogeneous swarms, we chose a

classic predator-prey model, in which the populations of prey p and predator individuals P

depend on one another [224, 225]. The Lotka-Volterra di↵erential equations (DEs) describe

the dynamics of a predator-prey ecosystem (Equations 17.2 and 17.3). In our corresponding,

two-dimensional swarm-based model, both prey and predators wander about randomly. Prey

dies when encountering a predator. It also dies of other causes with probability � at each

step of the simulation, or it reproduces with probability ↵. Predators prosper from nutritional

encounters with prey individuals and reproduce on the spot with a probability �. Their deaths

occur with probability �. The populations of predator and prey individuals, p
init

and P
init

, are

initially set to magnitudes between 10 and 500.

dp

dt
= p(↵� �P ) (17.2)

dP

dt
= �P (�p� �P ) (17.3)

We reverse engineered the parameters for the swarm model relying on several algorithms. First,

we discretized the continuous results of Equations 17.2 and 17.3 by means of an online time-

series segmentation algorithm [598]. We then measured the similarity value between the time

series produced by the swarm-based model and the segmented di↵erential equation results using

a generic Dynamic Time Warping Algorithm [599, 600]. This measure served as the fitness value

to search for adequate solutions based on particle swarm optimization (PSO) [226].

Di↵erent from the experiments presented in Section 17.3.3, the swarm individuals in this

predator-prey model cannot alternate their velocities. Therefore, in order to approximate a

given plot with a fixed time scale, we optimized for qualitative similarity between the swarm

simulation and the DE-system. We accomplished this by adding the number of simulated

steps to the swarm configuration. A single scalar factor su�ces to match the evolved and the

expected graphs.
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In order to foster robust solutions, we ran each simulation three times for a given set of param-

eters and considered the average performance as the particular swarm’s fitness value. Twenty

optimization experiments yielded two prototypical swarm configurations (Table 17.4). Their

average evolution over the course of one simulation is depicted in Figure 17.7. While the overall

PSO experiments have converged on two di↵erent solutions, each of them is still close to the

DE-based results. The second class of solutions, Figure 17.7(b), qualitatively matches the DE

model better as the population of prey individuals recovers at the end of the simulation. We

give credit for this development to the greater reproduction rate ↵ of prey individuals as seen

in Table 17.4. The shift between the swarm-based approximations and the DE-based target

graphs in Figure 17.7 is the result of a relatively generous error threshold for the similarity

measures.

Phenotype ↵ � � � |p
init

| |P
init

| steps

Figure 17.7(a) 0.38 0.13 0.64 0.18 432.63 317.13 132.63
Figure 17.7(b) 0.76 0.30 0.69 0.20 436.44 330.64 119.26

Table 17.4: Average parameters of two classes of swarm-based predator-prey models that were
found using particle swarm optimization (rounded to two decimal places).
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Figure 17.7: (a) and (b) show the population dynamics of two prototypical swarm configurations
compared to the results of the Lotka-Volterra DE model of a predator-prey system. The results
of both modelling approaches had to be scaled to match (see steps in Table 17.4), yielding these
qualitative diagrams.
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17.4 Abstract and Scale

In the previous section, we demonstrated the optimization of swarm behaviours in respect to

statically measurable outcomes, dynamics over time, and heterogeneous system compositions.

While the resulting systems may su�ce to retrace and explore certain isolated phenomena, the

extensibility of swarms, their intrinsic potential to interface with newly introduced elements and

to yield high-level emergent properties renders scalability of swarms another great challenge.

The flexibility of swarm-based modelling comes at a cost. Without further optimization, the

identification of interaction partners of n swarm individuals alone yields a computational com-

plexity of O(n2). Typically, the interaction scope of large numbers of units may, therefore,

be drastically reduced. The interaction in spatial environments are often limited to to the

local, discrete neighbourhoods relying on discrete computational modelling approaches such as

cellular automata or cellular potts [601]. However, the ability of the models to continuously

change their interaction topologies among the agents is crucial to capture the systems’ dynam-

ics responsible, for instance, for emergent transportation [94]. Of course, this confinement does

not only apply to spatial interactions but to the number of dimensions of interactions in gen-

eral, to the number of individual interaction rules, and to the number of simulated individuals.

A system of automated abstraction, which learns the local patterns and subsumes them as

high-level agents, o↵ers a perspective for a truly scalable computational approach. Instead of

learning behaviours motivated by predefined patterns as exercised in the previous section, we

now demonstrate how emergent patterns that occur among (properly trained) agents can be

learned, rephrased as higher level behaviours, and utilized to reduce the number of simulated

agents.

17.4.1 Towards Self-organizing Hierarchies

Early on when we started our investigations, we already had a rather clear picture of our

envisioned abstraction framework. It should automatically, and in a decentralized fashion,

create abstractions in a simulation, whenever possible, and abolish them, whenever necessary.

As we imagined it to be primarily deployed in swarm systems, it was obvious to us that the

abstractions should be discovered and managed by special swarm individuals that are immersed
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into arbitrary swarm simulations. We termed this concept self-organized middle-out abstraction

approach, or SOMO [268]—“middle-out” referring to the idea that it would create higher level

representations (bottom-up) but also break them down again (top-down).

However, in order to ensure the validity of our conceptual foundation, we narrowed down

the scope of our first set of experiments [9]. Therein, we identified correlated nodes in gene

regulation networks (modelled by a set of simple di↵erential equations), approximated their

behaviours as groups by means of artificial neural networks (ANNs) and subsumed the lower

level nodes by high-level agents, or meta-agents. High correlation values between concentrations

would consistently yield higher level agents, whereas drops in the correlation values of previously

grouped nodes resulted in the removal of the respective, outdated abstraction. Figures 17.8(a-

b) and (e-f) show the results of this greedy approach when applied to two di↵erent MAPK

pathway models, one resulting in a sigmoidal concentration of the MAPK-PP protein [7], the

other one in a periodic expression pattern [8]. The relationship between inaccurate emulation

by the meta-agents and the number of meta-agents in the system is obvious when comparing

Figures 17.8(a) and (e): The occurrence of dips in the otherwise smooth approximative graph

triggers the removal of abstractions. In the periodic model, changes occur too frequently to

be accommodated by the meta-agents which resulted in a high frequency of their creation and

removal (Figure 17.8(d)).

Although the overall performance of the the greedy abstraction approach was far from sat-

isfactory, it successfully reduced the number of agents in the system. In our second set of

experiments, we attempted to amend the particularly short lifespans of the abstractions seen

in the periodic MAPK model in Figure 17.8(d). So we promoted a dynamic management of the

learned meta-agent hierarchies [247]. Whenever a meta-agent became obsolete, it would restore

the subsumed, previously active abstraction hierarchy. Figures 17.8(c-f) depict the results of

this hierarchical approach. The stepwise restoration of lower-level abstractions is clearly iden-

tifiable in Figure 17.8(e): At about t = 2250 one meta-agent, which was trained by means

of standard Genetic Programming (GP), is removed and its two underlying meta-agents are

re-introduced into the simulation. Before this point in time, the learning process consistently

built greater abstractions. The predictions by the meta-agents exhibited greater inaccuracy

than in the greedy case. In addition, the divergence between target graph and approximative

results (Figure 17.8(c)) does not coincide well with the creation and removal of meta-agents
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(Figure 17.8(e)); it is surprising that yet another hierarchical level is added shortly after time

step t = 2000, even though the preceding emulated concentration strongly deviated from the

target function.

17.4.2 Immersive Decentralized Abstraction

We believe that the optimization and further the situation-dependent choice of apt parameter

set for the e�cient abstraction and hierarchy management necessitate in-depth studies on top

of a fully fledged SOMO prototype. Therefore, for our next experiments, instead of fine-

tuning the parameters to optimize the ratio between agent-reduction and accurate emulation,

we searched for a better learning example—one that allows for the deployment of self-organizing,

abstracting swarm individuals in the context of a swarm simulation. As previous results had

suggested (Section 17.4.1), linear instead of periodic system dynamics promised the best results

for a prototype SOMO implementation. Hence, we adjusted the SOMO system and designed

swarm individuals that could be immersed into a swarm simulation of the physiological process

of blood coagulation.

In addition to the swarm individuals of the model, or model agents, we designed an observer

agent. It observes model agents and logs their interactions in an interaction history that serves

as a database for pattern recognition. An entry in an interaction history contains, for instance,

a reference to the acting agent A, the executed action act with time stamp t along with the set of

interaction partners A. In our prototype, the observer applies a k-means clustering algorithm

[602] to find a cluster of overlapping interaction partners as soon as the interaction history

contains a su�ciently large set of logged entries. Once a cluster is identified, the observer

infers a generalized group behaviour from the logged interaction data: It learns the information

that remains fixed across the set of relevant rules and it identifies boundaries, periodicities and

probabilities of reoccurring variable actions. All the logged interactions that led to the rules

of the newly phrased group behaviour are removed from the lower level individuals and the

observer starts performing on their behalf. Initially, the observer has an unbiased confidence

in a newly learned abstraction. Periodically testing the behaviour of the subsumed agents in

the current situation lets the observer adjust this confidence—it grows, if the predictions were

correct, otherwise it drops. The observer fully restores the subsumed agents, should the con-

fidence drop below a certain threshold. The behavioural subsumption by the observer reduces
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Figure 17.8: Simulations based on a non-periodic and a periodic MAPK pathway model are
shown on the left-hand and the right-hand side, respectively. Comparisons between the dif-
ferential equation system and a greedy (a-b) and a hierarchical (c-d) abstraction approach are
shown. The results of the DE model are indicted by dashed lines, the agent-based dynamics
are depicted as shaded areas. The numbers of agents deployed by the abstraction approaches
are compared in (e) and (f) (individual legends are provided in these two diagrams).
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the otherwise necessary tests for triggering actions and the search for the respective interac-

tion partners. Of course, in a deployment scenario, this performance gain would be measured

against the computational overhead for observing model agents, abstracting, validating, and

possibly removing group behaviours.

We immersed the prototype SOMO observer in a swarm-based blood coagulation simulation in

which bio-agents aggregate at a wound site and form a clot (Figure 17.9). After t = 100, the

observer identifies k = 30 clusters in its interaction history and the centroid of the largest cluster

is considered to be the learned group behaviour for which [t
min

, t
max

] and p
exec

are inferred. At

intervals of � = 10, the observer updates its confidence values; abstractions with confidence

values below ⌧ = 30% are revoked. In this environment, our prototype successfully identified

and abstracted behaviours such as random movement, executed with probability p
exec

= 100%

and t 2 [0,1], and state changes induced by collision (p
exec

= 77% and t 2 [90, 95]). Due

to the model’s simplicity, the number of calculated situations over the course of a simulation

increases linearly with the number of incoming bio-agents (introduced by the blood stream).

Our prototype managed to keep this number constant (Figure 17.10). Its overhead is shown

in the additionally computed situations that occur just before the abstraction starts (t < 100).

The peaks in our proposed method indicate the intervals at which some model agents are

allowed to execute their actions.

17.5 Summary and Future Work

Swarm-based models and simulations bridge the gap between the level of local interactions and

global system behaviours. Instead of programming a swarm system, one has to program its

individuals, and in such a way that the whole swarm can accomplish its task. A computational

swarm might, for instance, be designed to retrace and predict natural phenomena, to optimize

mathematically phrased problems, or to support creative design decisions. In this article, we

presented several experiments that elucidate how the behaviour of swarm individuals can be

programmed.

First, in Section 17.3, we focussed on the interplay of globally defined constraints and the in-

ferred behaviours of locally interacting swarm individuals. Due to the spatial properties of basic

boid swarms, we formulated tasks geometrically to (1) evolve flocking swarms in 2D and (2)
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constructive swarms in 3D (by means of Genetic Algorithms). (3) We introduced a quantitative

measure to capture the neighbourhood dynamics of boid flocks that allowed us to genetically

breed boid individuals that would, in a group, approximate a predefined neighbourhood density

function. (4) A heterogeneous swarm model of predator and prey concluded our explorations

of guiding emergence; here, a system of di↵erential equations specified the system dynamics,

and the parameters of the two types of swarm individuals were learned (by means of particle

swarm optimization).

In Section 17.4, we then presented several stages toward an inherently scalable approach to

swarm simulation, the Self-organized Middle-out abstraction framework, or SOMO. Here, meta-

agents subsume the behaviours of lower level individuals based on re-occurring interaction

patterns in order to reduce the number of required computation steps. Meta-agents organize

themselves in hierarchies that are dynamically built up and broken down, depending on the

demands of the ongoing simulation and the predictive power of the learned abstractions. In our

experiments, we first (5) greedily subsumed low-level agents by meta-agents in an easily veri-

fiable di↵erential equation model of the MAPK signalling pathway (mitogen-activated protein

kinase). (6) We introduced a dynamic management of hierarchies so that, upon the identi-

fication of an obsolete abstraction a preceding abstraction is restored instead of resetting all

the learned accomplishments all at once. Finally, we (7) equipped special swarm individuals,

so-called observer agents, with a behaviour to build and manage abstraction hierarchies based

on interaction histories of groups of monitored individuals.

While examples (1) to (4) emphasize the top-down learning, breeding, or optimization of the

behaviour of swarm individuals, instances (5) to (7) attempt the opposite; the SOMO approach

learns and utilizes patterns that emerge from local interactions bottom-up, only breaking them

down again should it become necessary. As much as these perspectives might di↵er, we believe,

that they might serve as forerunners of an algorithmic framework for integrative, large-scale

and multi-scale modelling and simulation. In the last paragraph of this article, we want to

outline how this could work, at the same time implying a suggested direction of future work in

this field.

The more specialized the interaction patterns a SOMO observer is looking for, the more ef-

ficiently will it identify and abstract them. A set of di↵erently configured SOMO observers

spread across the simulation space could evolve based on their success to abstract in their re-
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spective niches—one may assume that activity is strongly heterogeneous across the interaction

dimensions of most large-scale simulations. At this point, the unsupervised online learning

process of SOMO would be two-tear, considering the accuracy of the generated abstraction hi-

erarchies and the configuration of the observer agents. Additional top-down constraints could

be introduced by a second observer type that reconfigures individuals in order to reproduce spe-

cific process patterns. Such a top-down observer could substantially change the original model,

so its influence should be strictly constrained. The conditional introduction and removal of

top-down observers, depending, for instance, on the emergence of certain high-level behaviours

learned by the currently implemented bottom-up SOMO observers, would enable an external

modeller to embed expected milestones into a bottom-up computed multi-scale simulation and

ensure the seamless computational integration of its scales.



Chapter 18

Abstraction of Agent Interaction Pro-

cesses: Towards Large-Scale Multi-agent

Models

The typically large numbers of interaction in agent-based simulations come at considerable

computational costs. In this article, we present an approach to reduce the number of interac-

tions based on behavioural patterns that recur during runtime. We employ machine learning

techniques to abstract the behaviour of groups of agents to cut down computational complexity

while preserving the inherent flexibility of agent-based models. The learned abstractions, which

subsume the underlying model agents’ interactions, are constantly tested for their validity—

after all, the dynamics of a system may change over time to such an extent that previously

learned patterns would not reoccur. An invalid abstraction is, therefore, removed again from

the system. The creation and removal of abstractions continues throughout the course of a

simulation in order to ensure an adequate adaptation to the system dynamics. Experimental

results on biological agent-based simulations show that our proposed approach can successfully

reduce the computational complexity during the simulation while maintaining the freedom of

arbitrary interactions.

Abbas Sarraf Shirazi, Sebastian von Mammen, and Christian Jacob. Abstraction of

agent interaction processes: Towards large-scale multi-agent models. Simulation 89

(2013), no. 4, pp. 524–538.
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18.1 Introduction

Phase transitions in complex systems cannot be inferred from the properties of the underlying

parts. Rather they occur due to the interactions of the involved variables [278]. The agent-based

modelling approach is a well-suited means to model complex systems, as it provides each part

of the system with the ability to change its own state and to interact with other parts. Agent-

based computational models have also gained great popularity as they can address heterogenous

populations, noise, spatial and temporal relationships [304, 603, 604, 241].

The flexibility of agent-based models renders their simulation computationally ine�cient [605].

As each agent could potentially interact with all the other n agents, merely identifying who

interacts with whom becomes a computationally expensive task—O(n2) in the worst case. To

overcome this problem, agent-based simulations are often limited to fixed neighbourhoods in

discrete lattice spaces as implemented by cellular automata [606, 246, 607]. However, the ability

of a model to continuously change the interaction topology among the agents is crucial to trace,

for instance, the dynamics of transportation e↵ects [94] or developmental processes [342].

In this article, we present an approach to apply machine learning techniques such as evolu-

tionary algorithms, neural networks, and clustering in order to reduce the computational costs

of an agent-based simulation while preserving its inherent flexibility. In particular, we show

how groups of agents that exhibit behavioural patterns can be reduced to single agents with

(computationally) simplified interaction rules. In order to identify a group of agents that can

be substituted by a single agent, either neighbouring agents form a group, or, more generically,

an observer agent monitors arbitrary groups of agents and substitutes them based on their

exhibited behavioural patterns. As the agents’ interactions may vary over time, the learned be-

havioural patterns may loose their validity. Therefore, confidence values determine the lifespan

of the learned behavioural abstractions. Continuous re-evaluation of these confidence values al-

lows for a self-organized optimization process in which the substitutions are adaptively created

and revoked.

The remainder of this paper is organized as follows. Section 18.2 reviews related works in multi-

agent modeling and abstraction. In Section 18.3, we first show how we can use artificial neural

networks to learn the collective behaviour of agent groups. Next, we present an approach
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that relies on genetic programming and manages agent hierarchies dynamically, i.e. it does

not destroy the learned abstractions completely should their confidence values drop, but only

incrementally, as needed. In this context, we also elucidate the algorithm that ensures the

validity of any learned patterns. Section 18.4 further refines the introduced approaches to

consider arbitrary types of agent interactions including collisions and state changes. In order

to demonstrate the e↵ectiveness of this refined approach, we apply it to an agent-based blood

coagulation simulation. Finally, concluding remarks are presented in Section 18.5.

18.2 Related Work

Abstract knowledge represents higher-order patterns that occur in lower-level concepts. It bears

the essence of a system and ignores unnecessary details [608, 609]. Higher-order patterns emerge

from the interactions of the parts, or agents, of a system [604]. In natural systems the formation

of higher-order patterns happens across several scales of time and space, which renders their

complete description impossible. However, it has been suggested that one could approximate

the multiple scales of natural systems and their interdependencies by means of computational

models that incorporate hierarchies of agents. High level agents in such hierarchies correspond

to high degrees of abstraction of the system processes. In this section, we briefly describe some

of the related works that motivated or addressed this concept.

18.2.1 From Bottom-up to Abstract Models

Artificial chemistries [337] and computational developmental systems—such as L-systems [338],

relational growth grammars [176], or swarm grammars [3]—explicitly, often visually trace the

emergence of high level structures based on simple constituents. These constituents may be rep-

resented as formal symbols or as entities in physics simulations. Complex interaction patterns

can emerge from even the most simple interactions. Autocatalytic networks, for example, de-

note patterns of chemical reactions that nurture one another [581]. Stable interaction networks

may even exhibit the property of self-replication [277]. As a result, the formation of intertwined

entities is promoted and hierarchies of increasing complexity emerge in nature [261].

Rasmussen et al. designed a computational model based on artificial chemistries, in which
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structures are formed with an increase in complexity and with di↵erent functionalities—from

monomers to polymers to micelles [10]. Although these experiments clearly retrace the forma-

tion of patterns at several levels of scale, Dorin and McCormack claim that such phenomena

are not surprising given the model’s simplicity. Dorin and McCormack argue that it takes

considerably more e↵ort to determine the novelties at higher levels in the hierarchy [264].

A first step toward the identification of high-level patterns is to gain clarity about the abstrac-

tions inherent in an agent model to begin with. Bosse et al. propose the classification of types

and levels of abstraction of agent-based models based on the following dimensions [610]:

The Process Abstraction Dimension deals with the behaviour representation of an agent,

e.g. whether an agent is modelled by its inputs and outputs, whether other variables like

beliefs or desires are also considered, or whether even lower level properties of an agent

are modelled.

The Temporal Dimension deals with the definition of the agents’ behaviours over smaller

or longer periods of time.

The Agent Cluster Dimension specifies the granularity of the agent-based model, i.e whether

an individual agent represents an entity or a cluster of entities.

Ralambondrainy et al. identify the complex task of observing a simulation, for which they

propose a separate multi-agent system [611]. They describe an ontology to facilitate the com-

munications of the agents in the second system. The observation agents have three main tasks,

namely (1) acquisition of observational elements, (2) processing of simulation results, and (3)

presentation of the results to human actors. Although the second system does not a↵ect the

original simulation, the notion of a separate system with the ability to present higher-level,

abstract knowledge emphasizes the necessity to have external observers in the simulation.

Several approaches rely on a priori definitions to identify emergent patterns in agent-based sim-

ulations. Servat et al. acknowledge that simulation states can provide clues for the introduction

and configuration of high-order agents [612]. However, they insist on the necessity to predefine

the behaviours of high-level agents. The same is true for Chen et al.’s formalism which they

specifically use for validating predicted behaviours [613, 603].
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In order to capture emergent phenomena, Dessalles and Phan foresaw a system in which de-

tectors would identify emergent patterns and subsume the activity of the respective lower level

objects [278]. Similarly, Denzinger and Hamdan introduce a modeling agent that observes

perceivable behaviours of other agents and maps them to a predefined stereotype [279]. But

Denzinger and Hamdan also present a novel aspect: The periodic re-evaluation of the agents’

behaviours gives the modeling agent the opportunity to adjust the mappings in accordance

with the dynamics of the system. Not only might the local interaction patterns change over

time, but high-level phenomena might also influence the underlying layers. Lavelle et al. use the

term immergence, or downward causation, to describe the impact of high-level organizations on

entities at lower scales [594]. They postulate that explicit functions must be defined to bridge

between micro and macro levels.

Cardon proposes three organizational levels to control the behaviour of a multi-agent system

[614]. The constituent agents are defined in the aspectual level. A geometrical mapping of

aspectual agents forms the second level called the morphological level. Using a simplified,

higher-level representation of agents in the morphological level, analysis agents in the evocation

level identify the current state of the simulation and control the agents in the aspectual level

by tampering their behaviour. This approach provides self-adaptability in the system while

enforcing a degree of control on the behaviour of the system as a whole.

von Mammen et al. introduced the concept of self-organized middle-out abstraction (SOMO),

where observer agents monitor the interaction history of sets of agents, use motif discovery to

detect recurrent patterns, and create hierarchies of high-level agents that subsume the lower in-

teracting agencies [268]. Although they do not exclude the possibility of a relationship between

learned high-order patterns and emergent phenomena found in nature, SOMO primarily targets

an increase of e�ciency by repeatedly substituting groups of agents by individual high-level

instances that work at lower computational costs.

The authors of this article have previously demonstrated that high-level agent substitution

indeed results in a reduction of computational costs [9, 247]. In particular, we deployed artificial

neural networks and genetic programming, two established inductive learning methods, to learn

agent abstractions in a model of a biological signaling pathway. Clusters of biological substrates

and their corresponding activation patterns were substituted by meta-agents. We recently

extended our earlier implementation by introducing observer agents that are able to abstract
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arbitrary patterns of groups of agents [605].

18.2.2 Toward a Framework for Multi-scale Modeling

As technology advances the design of multi-scale models becomes more prominent. As long

as these approaches merely connect models of di↵erent scales and feed back and forth the

computed results as variable parameters, the challenge can be addressed with the right level

of domain knowledge and software engineering skills [615, 87]. As discussed in Section 18.2.1,

there are only few concepts that address the issue of automatic identification and abstraction

of emergent patterns, which is crucial for a system that would identify new levels as a result of

the computational process.

Martins et al. review di↵erent multi-scale models (from biomolecules to cells, tissues and organs)

and conclude that despite the lack of a quantitative model of a cell, such models may help

understand cancer growth and its therapy [616]. Erson and Cavusoglu propose a software

framework for multi-scale model integration and simulation [617]; however, no specific modeling

technique is described. There are a few physical multi-scale models, e.g. CPM [618], and

Synergetics [619]. However, as of yet, there is no universally adopted computational framework

for the assembly of multi-scale biological models [301].

Bassingthwaighte et al. identify a systems approach for developing multi-scale models which

includes six steps [620]: (1) the definition of the model at its highest level of resolution, (2)

the abstraction of patterns (“reduced-form modules”), (3) the identification of valid parameter

ranges of these abstractions, (4) the observation of the variables of the system, (5) replacement

of higher resolution models with abstractions, and (6) the validation of the performance of the

multi-scale model against available real-world data. The authors further discuss open challenges

of their approach such as parameter identification in closed-loop systems and the identification

of input-output delays.

18.3 Abstraction in the MAPK Signaling Pathways

A signaling pathway describes how information travels from the receptors of a cell to an inside

target [245]. Typically, the information ripples through a cascade of biochemical reactions
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(a) (b)

Figure 18.1: (a) The MAPK signaling pathway (from [7]), and (b) The MAPK signaling path-
way with a negative feedback (from [8]).

that are carried out by enzymes. The Mitogen-Activated Protein Kinase (MAPK) pathway

plays a key role in the cell cycle and is extensively documented. It is responsible for responses

to extracellular stimuli and regulates cellular activities, such as gene expression, mitosis, and

di↵erentiation [246]. In the MAPK signaling pathway proposed in [7], a hypothetical enzyme

E1 stimulates the cell and results in an increase in production of the MAPK-PP enzyme (Fig.

18.1(a)). In another model [8], a negative feedback loop causes sustained oscillations in the

production of MAPK-PP (Fig. 18.1(b)).

The diagram in Figure 18.1 describes the interaction topology of substrates. Numerical dif-

ferential equation solvers are used to calculate their concentration updates over the course of

time. For example, the update formula for the MAPK-PP concentration is given as follows:

d[MAPK � PP ]/dt = v
8

� v
9

(18.1)

v
8

=
k
8

· [MKK � PP ] · [MAPK � P ]

K
8

+ [MAPK � P ]
(18.2)

v
9

=
V
9

· [MAPK � PP ]

K
9

+ [MAPK � PP ]
(18.3)

where k
8

, K
8

, V
9

, and K
9

are constants and [X] is the current concentration of substrate X.

The complete set of update equations can be found in [7] and [8].
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Figure 18.2: Agent interaction graphs for the MAPK signaling pathways of Fig. 18.1.

Amigoni and Schia↵onati present three approaches to multi-agent simulations of the MAPK

pathway [245]. In the first approach, each chemical reaction is represented as an agent [246].

The second approach translates each intracellular component into an agent that uses a black-

board mechanism [621] to interact with other agents in the system [622]. In the third model,

each molecular entity acts as an agent [623]. For our model, we follow the last approach and

consider each substrate a loosely defined, independent agent. Their behaviours are determined

by the interaction graphs shown in Figure 18.2 and the update formulas given in Equations

18.1 to 18.3.

18.3.1 Creating Meta-agents

In our system, an agent maintains a list of all its neighbours and it logs their respective inter-

actions in so-called interaction histories. It weighs the relationships to its neighbours based on

its correlation coe�cient. A correlation coe�cient between two statistical variables indicates

their linear dependency. A correlation coe�cient of zero implies that two variables are inde-

pendent, whereas ±1 indicates highly correlated variables. The greater the correlation between

two variables, the more similar is their function. Given a series of n measurements of agents s

and t in the form of s
i

and t
i

, where i = 1, 2, ..., n, their correlation coe�cient (⇢
st

) is defined

as follows:

⇢
st

=

P
n

i=1

(s
i

� s̄)(t
i

� t̄)

(n� 1)�
s

�
t

(18.4)

where s̄ and t̄ are the mean values, and �
s

and �
t

are standard deviations of s and t, respectively.
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Algorithm 2 Meta-agent Creation

m = current agent;
Agent new agent;
Queue q;
q.Enqueue(m);
new agent.Add(m);
while !q.empty() do
Agent head = q.Dequeue();
for all Agent s in head do
for all Agent t in s.Neighbours() do
if |⇢

st

| � ⌧
edge

then
new agent.Add(t);
q.Enqueue(t);

end if
end for

end for
end while
return new agent;

Algorithm 3 Validity Monitoring

m = current agent;
needToBreak = false;

for all Agent s in m do
for all Agent t in s.Neighbours() do
if |⇢

st

� ⇢0
st

| > ⌧
valid

then
needToBreak = true;
break;

end if
end for

end for

if needToBreak then
simulation.remove(m);
for all Agent s in m do
simulation.add(s);

end for
end if

Each agent periodically checks whether its correlation coe�cient with each neighbour is greater

than some threshold ⌧
edge

. If this is the case, they form an initial meta-agent. This heuristic

process is repeated in order to identify a cluster of agents that are highly correlated (Algorithm

2). Fig. 18.3 shows an example in which Agent A finds Agent C and Agent E, and they form a

meta-agent. The set of new neighbours is the union of all neighbours of the underlying nodes.

18.3.2 Learning the Group Behaviour

A new meta-agent replaces its underlying agents and interacts on their behalf. In order to

approximate the subsumed agents’ group behaviour, a learning algorithm such as artificial

neural networks, evolutionary algorithms, or motif search in time series can be deployed. The

learning algorithm extracts the group behaviour from the interaction histories that are locally

stored with each agent.

18.3.3 Monitoring the Validity of Modules

Due to changes in the overall system, meta-agents might exhibit invalid behaviours at some

point. Therefore, we check the validity of each meta-agent periodically by comparing its de-
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Figure 18.3: Example of an interaction graph. The edges denote the correlation coe�cients. (a)
Agent A, Agent C, and Agent E form a meta-agent, (b) The new neighbours of this meta-agent
are Agent B and Agent D.

ployed behaviour with its expected behaviour. The correlation coe�cients of the underlying

agents serve as a heuristic indicator as they triggered the formation of the meta-agent (⇢0
st

).

According to Algorithm 3, we compare the current correlation coe�cients of the meta-agent

to previous values for each individual agent—if the di↵erence is larger than some threshold,

we consider the meta-agent invalid. As a consequence, we break down its hierarchy and set its

underlying agents free.

18.3.4 Results

To validate the performance of our approach, we conducted a series of experiments on both

MAPK models. The experiments are determined by the following five parameters (Table 18.1):

We let the system run for some time t
wait

and then start looking for meta-agents within a

given time interval �
find

. The waiting time t
wait

is important as the system has to reach a

rather stable condition before the abstraction algorithm starts to work. We keep monitoring

the system in predefined intervals, �
monitor

. In order to integrate agents and to form meta-

agents, the correlation coe�cient between two agents—or the value of an edge in the interaction

graph—should be greater than some threshold ⌧
edge

. Finally, a meta-agent is valid as long as

its correlation coe�cients with its neighbours do not exceed the original correlation coe�cients

by a threshold ⌧
valid

. Working values for ⌧
valid

and ⌧
edge

have been found through trial and error

(Table 18.1).
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Table 18.1: Model Parameters

Parameter Name Symbol
Value in

the 1st MAPK
Model

Value in
the 2nd MAPK

Model

Delay before finding meta-agents t
wait

1200 1500
Meta-agent finding interval �

find

300 300
Monitoring interval �

monitor

20 20
Validity Threshold ⌧

valid

0.1 0.1
Edge Threshold ⌧

edge

0.95 0.7

ANN Learning

First, we present an experiment that utilizes feed-forward artificial neural networks (ANNs)

with the back-propagation learning algorithm [624] to train meta-agents. The structure of an

ANN is determined by its inputs and outputs as well as the number of nodes in the hidden

layer. Since agents in our model are not aware of their dependent agents (they only know about

their outgoing edges in the interaction graph), the output of the network should simply be all

of the underlying agents. In the example shown in Fig. 18.3, outputs are Agents A, C, and E.

The input nodes of the network are comprised of all the internal and their externally connected

nodes (Agents A, C, D, and E in Fig. 18.3). As for the number of nodes in the hidden layer,

we follow a simple rule-of-thumb and set it to the number of inputs+ 2.

Fig. 18.4(a) shows the result of applying our approach to the first MAPK model in terms of

the number of agents. Initially, there are eight model agents in the system. We use the term

“model agent” to emphasize their role in the original model, as opposed to meta-agents that

are introduced as part of the abstraction process. The identification of meta-agents starts at

t
wait

= 1200. The resulting pattern of periodic creation and destruction of meta-agents (Fig.

18.4(a)) stems from the fact that a meta-agent’s probability to become invalid increases with

its number of subsumed model agents. Generally, a meta-agent becomes invalid even if one

of its subsumed agents becomes invalid. Therefore, after the system is reduced to a single

meta-agent, it breaks and releases all the eight model agents.

Fig. 18.4(b) shows that the concentration computed by the agent-based pathway model suc-

cessfully resembles that of the PDE solver. Fig. 18.4(c) shows the result of the same algorithm

for the second MAPK pathway. Since this model is periodic, the algorithm successively finds,
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Figure 18.4: Adaptive modularization results for the MAPK pathway models of Fig. 18.1. (a),
(c) Number of agents, (b), (d) Concentration of MAPK-PP.

trains, and breaks meta-agents over time. The great number of spikes in Fig. 18.4(c) implies

that the meta-agents are only valid for a short period of time.

GP Learning and Dynamic Hierarchies

In a second experiment, we utilize genetic programming (GP) to find the function that ap-

proximates the group behaviour subsumed by a meta-agent. We include four mathematical

operations (+, -, *, /) in the function set of the GP algorithm, whereas the internal nodes of

the interaction graph serve as the available terminals. Using a heuristic learning algorithm like

GP enables us to control the speed of learning and to perform a distributed search for good

solutions.

The qualitative di↵erence of this second approach compared to the presented ANN-approach

is the introduction of dynamic agent hierarchies. Previously, the destruction of a meta-agent

set free all the associated model agents. Now, meta-agents store references to their underlying
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Hierarchical 
Learning

Non-hierarchical 
Learning

Figure 18.5: Di↵erence of the non-hierarchical and the hierarchical approach to agent abstrac-
tion: When a non-hierarchical agent is destroyed, all the associated model agents are released
back into the simulation (shown at the top). In the other case (at the bottom), the hierarchical
configuration stored with a meta-agent is restored resulting in one meta-agent and one model
agent.

model agents only in the first instance of the learning process. Meta-agents that subsume

lower-level meta-agents store those instead, which results in a hierarchy of meta-agents with

the original model agents as its leaves. When a meta-agent becomes invalid and is destroyed, its

underlying agents—whether meta-agents or model agents—are released back into the simulation

(Fig. 18.5).

Fig. 18.6(a) compares the performance of the hierarchical and the previously presented non-

hierarchical approach. After t
wait

= 1200, the non-hierarchical approach reduces the number

of agents faster, but it cannot maintain any of the abstractions once the meta-agent becomes

invalid at around t = 1700 and t = 2500. When the hierarchical meta-agent becomes invalid, its

underlying hierarchy is restored—a single meta-agent breaks down at t = 2200 and releases 4

meta-agents back into the system (compared to 8 model agents). In both experiments, a meta-

agent subsuming the behaviour of a larger number of agents becomes invalid very fast. This

explains why an all-encompassing meta-agent does not stay long in the system (2100 < t < 2200

in Fig. 18.6(a)). Fig. 18.6(b) shows the MAPK concentration over time produced by the

hierarchical approach and compared to the results of the PDE solver.

As Fig. 18.6(c) shows, both experiments performed similarly on the second MAPK pathway.

The number of spikes in both approaches suggests that neither learning method makes a sig-

nificant di↵erence in case of periodicity. We reason that the short period of validity in both

presented approaches is the result of using the correlation coe�cient to measure how closely

two agents work together. Since the correlation coe�cient varies from �1 to +1 over a periodic
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signal, it fails to capture the similarity of two agents in a periodic system. This result suggests

that we have to look for other indicators when dealing with a periodic system.
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Figure 18.6: Results for the MAPK pathway model of Fig. 18.1. (a), (c) Number of agents
(solid line: our hierarchical approach, dashed line: non-hierarchical approach proposed in [9] ),
(b), (d) Concentration of MAPK-PP.

18.4 Self-Organized Middle-Out Learning

and Abstraction

In the third approach, we introduce observer agents, or observers, that coexist alongside of

the model agents in the simulation space (Figure 18.7). The simulation framework treats

both kinds of agents equally, i.e. each of these agent types is considered for interactions at

each simulation step. Instead of an external algorithm (Section 18.3.4), the observer agents

now handle the creation and management of abstraction hierarchies based on the interaction

processes performed by model agents.
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Once an observer successfully identifies an interaction pattern, it acts as a meta-agent that

replaces the individual behaviours previously maintained by the model agents that led to the

identified pattern. Acting as a meta-agent, the observer itself becomes subjected to observation.

In order to verify their validity, observers would check whether the deployment of the subsumed

individual behaviours would yield an outcome di↵erent from the predictions of the learned

pattern. If the discrepancy between these two outcomes exceeds a given threshold, the observer

omits its learned pattern and restores the subsumed individual behaviours.

The success of the abstraction system depends on the configuration of the deployed observer

agents. In the following paragraphs, we explain one way how they can replace the individual

behaviours with a group behaviour and how the observer agents can validate, maintain, or

abandon the learned patterns throughout the course of a simulation.

18.4.1 Observer Configuration

Like any other agent in a multi-agent system, an observer can be defined as ag = (Sit, Act,Dat, f
ag

),

a 4-tuple composed of a set Sit of situations, a set Act of actions, a set Dat of internal data,

and a decision function f
ag

[54]. At any point in time, the agent decides to perform an ac-

tion based on its situation and internal data. This decision is captured in a decision function

f
ag

: Sit⇥Dat! Act. In rule-based agent architectures, Dat can be re-written as Intvar⇥RS,

where Intvar is a set of values for internal variables and RS is a set of interaction rules:

if condition then execute act,

where act 2 Act, and condition is a statement about the situation the agent is in and the

actual values of the variables in Intvar. Both condition and act might involve other agents

called interaction partners.

Observers are configured to log the interactions of model agents in their interaction histories:

IH
Exec

is used to log executed interactions, whereas IH
NExec

logs the numbers of considered but

not executed actions (Table 18.2). An IH
Exec

entry may contain any information related to an

observed interaction. For instance, an observer may store that the model agent A executed an

action act 2 Act with time stamp t along with the set of interaction partners A.



18.4. Self-Organized Middle-Out Learningand Abstraction 351

Obs0

Ag0

Ag1

Model Agents

Simulation

...

Ag2

Ag3

Ag4

Obs1

Figure 18.7: Observers Obs
0

and Obs
1

inside the simulation space monitor a subset of agents
and log necessary information based on their configuration.

An observer extracts group behaviours from the logged data by applying a pattern recognition

algorithm. In this section, we present results based on clustering, which will be explained next.

18.4.2 Learning and Abstraction

In our prototype, an observer logs interaction partners in combination with the time of the

interaction. Once the interaction history IH
Exec

has grown beyond a certain threshold, the

Table 18.2: Interaction histories inside an observer

Interaction History of
Executed Actions

(IH
Exec

)

Time Agent Action
Interaction
Partners

t
0

ag
0

Activate A
2

t
1

ag
0

Activate A
2

. . . .

. . . .

. . . .
t
1

ag
2

Activate A
2

t
2

ag
7

Activate A
2

Interaction History of Computed but
Unexecuted Actions

(IH
NExec

)
Time Action Count
t
0

Activate n
0

t
3

Activate n
3

. . .

. . .

. . .
t
15

Activate n
15

t
23

Activate n
23

t
32

Activate n
32
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observer applies a k -means clustering algorithm [602] to find a large cluster C of overlapping

interaction partners. The similarity between two interactions is calculated based on the number

of overlapping interaction partners. When the observer finds such a cluster, it infers a gener-

alized group behaviour from the clustered individual interactions by combining their features.

The first feature is the set of overlapping interaction partners that are constant for the learned

action. Secondly, the observer needs to know when and at which rate it should execute the

learned action.

The observer first finds the time range [t
min

, t
max

] of the executed action from all the individual

interactions in C. Two cases might happen here: (1) an interaction only occurs within a bound

time range, (2) an interaction continuously occurs over time or the observer is uncertain whether

it has had enough time to determine an upper bound t
max

of the time range. In order to address

the latter case, the observer compares the two most recent time stamps an interaction occurs

in IH
Exec

. If the di↵erence exceeds the observation time, the observer sets t
max

to 1.

Next, the observer extracts the rate of execution defined as the number of executed interactions

divided by the number of total computations of the interaction:

p
exec

=
|IH

Exec

|
|IH

Exec

|+ |ihn| , ihn 2 IH
NExec

& ihn.t 2 [t
min

, t
max

] (18.5)

where IH
Exec

is the set of executed interactions, ihn is the set of considered but not executed

interactions whose timestamp is in [t
min

, t
max

], and | · | denotes the size of a set.

For example, all the IH
Exec

records in Table 18.2 constitute a cluster in which [t
min

, t
max

] is

inferred from the first column. The second column (ags) is discarded and regarded as wildcard,

the set of interaction partners is fixed to A
2

, and p
exec

is calculated as described above.

Finally, the observer removes the action act from the model agent. From now on, it performs

the action on the model agent’s behalf. For instance, an observer may learn that action act

of an agent A occurs at A.t 2 [t
min

, t
max

], and executes it on A’s behalf with an according

probability p
exec

. Since the observer also learns the interaction partners an action depends on,

the computational resources to identify those are saved as well.
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18.4.3 Validation of the Learned Behaviours

After some time, a learned behaviour might not be valid any more. In order to monitor the

reliability of a learned behaviour, it is initialized with an unbiased confidence value conf
initial

=

50%. At regular time intervals, the observer lets some model agents execute their original

interactions. The confidence value is regulated based on the di↵erence between the actual

behaviour of model agents compared to the behaviour expected by the observer (Fig. 18.8).

In our prototype, we only consider the di↵erence in interaction partners. The time at which

an individual interaction occurs or the rate at which model agents execute their interactions

could also be incorporated into the comparison. A confidence measure below a given threshold

indicates that a learned group behaviour is not valid any longer and that the observer has to

restore the model agents’ original behaviours.

18.4.4 Experiments

The outlined self-organized optimization method can be employed in arbitrary agent simula-

tions. Biological simulations are particularly suitable applications as biological entities will be

directly modelled as agents. When simulating biological systems at the level of inter-cellular

and inter-molecular interactions, actions are mostly triggered by collisions or internal agent

states. We applied our proposed method to an agent-based simulation of blood coagulation

described in the next subsection. All the experiments were repeated 10 times to ensure that a

particular experiment did not bias the results.

Model Setup

Blood coagulates at wound sites because of the interplay of various bio-agents, e.g., platelets,

fibrinogens, and serotonins. If a collagen protein collides with a platelet, the platelet becomes

activated. In case an activated platelet collides with the wound site, it secretes several chemicals

which in turn activate more platelets in the blood vessel. Gradually, a network of fibrins together

with a platelet plug form a clot around the wound site (Fig. 18.9). We modelled twelve blood

factors as agents whose behaviours are expressed as a set of interaction rules. There are ten

di↵erent interactions which fall into two categories: (1) state-dependent interactions and (2)
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Time to start 
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End iteration t

Start iteration t

AGExec = AG - AGVal

AG: Set of the observed agents

AGVal: Subset of the observed 
agents used to validate the 
group behaviour

AGExec: Subset of the observed 
agents for which the group 
behaviour is executed

Randomly create AGVal 
from AG
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Figure 18.8: Flow chart of the validation step. At some interval, the observer selects a random
subset of the observed agents and restores their individual behaviours. The result of their
interactions is evaluated in the next iteration to regulate the confidence value. The observer
continues to execute the group behaviour for all other agents.

collision-dependent interactions. The actions themselves introduce local state changes of the

agents (represented as internal variables), or they produce or remove agents in the simulation.

The simulation starts with 10 agents and ends up with nearly 140 interacting agents (Fig.

18.10).

Observer Setup

Each interaction is monitored by an observer that records only the interaction partners. Table

18.3 lists all the important parameters in our system. Once an observer monitors an interaction

long enough (t
wait

), it applies a k -means clustering algorithm to create k clusters. The centroid

of the largest cluster is considered to be the learned group behaviour for which [t
min

, t
max

] and
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Figure 18.9: The blood coagulation simulation at di↵erent time steps (t
1

< t
2

< t
3

). The
process is observed from two di↵erent perspectives: inside and outside of the vessel.
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Figure 18.10: Blood coagulation simulation: Number of agents over time.
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Table 18.3: System Parameters

Parameter Name Symbol Value

Delay before learning t
wait

350
Validation interval V

interval

70
Validation length V

length

10
Validation ratio V

ratio

30%
Confidence threshold ⌧

conf

0.3
Number of clusters in k -means k 10

p
exec

are inferred. The observer subsumes the learned interaction by executing it on behalf of

the model agents. In predefined intervals, V
interval

, the observer randomly chooses a subset of

the subsumed behaviours and allows the model agents to execute their original interactions.

The size of this subset is determined by V
ratio

. After some time, V
length

, the observer subsumes

this subset again and and validates its abstractions based on the resulting interaction compared

to the expected result. The confidence of the learned pattern is regulated accordingly. If the

confidence of a pattern is less than some threshold ⌧
conf

, the learned pattern will be removed

from the simulation.

Results

The presented prototype implementation successfully identified several group behaviours within

the simulation. For example, Random Walk is a self-triggering action found to be executed

with probability p
exec

= 100% and t 2 [0,1]. Adhere is an interaction executed in t 2 [172,1]

with probability p
exec

= 65%. Self Activation is another collision-based example with p
exec

=

2.8% and t 2 [173, 190].

Figure 18.11(a) shows the actual run-time of the simulation at each time step. When there is

no observer, the simulation slows down as it proceeds, as simulating the interactions among the

increasing number of agents requires more computations. When the observers are present in

the simulation logging interaction data (0 < t < 350), they add a little overhead to the run-time

of the whole simulation. At t = 350 when the learning happens, there is a peak in the run-time.

However, once successfully deployed, the observers reduce the run-time drastically by executing

group behaviours instead of individual behaviours. The validation cycle is triggered every

V
interval

= 70 time steps, therefore there is a fairly high peak at this interval. It continues for
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V
length

= 10 time steps before the learned pattern is evaluated. After this time, the simulation

runs fast again until the next validation cycle.
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Figure 18.11: Blood coagulation simulation: Run-time with and without observers, (a) Run-
time per simulation time step, (b) Cumulative run-time.

Figure 18.11(b) depicts the cumulative run-time of the simulation comparing a normal run

against a run with observers. The overhead of having observers clearly pays o↵ at t > 390,

when the cumulative run-time of a normal run exceeds that of a run with observers. On average,

a normal run takes 107 seconds to complete 1000 simulation time steps, almost twice as long

as the run with the observers, which takes 56 seconds.
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Figure 18.12: The confidence value over time shown for an exemplarily learned pattern.

Figure 18.12 shows the change of confidence for one of the learned patterns. Since there is

no learned pattern before t = 350, the confidence value is also 0. However, after the ob-

server abstracts an individual behaviour, the confidence value is initially set to 0.5. As all the

abstractions work correctly, the confidence values continuously increase over time.

18.5 Conclusion and Future Work

We introduced a concept for the reduction of computational complexity in agent-based models

by means of learning behavioural patterns over the course of a simulation. The abstractions

would be expressed as meta-agents that subsume lower-level agents and be seamlessly integrated

into the agent models.

We presented and evaluated three implementations: (1) The first utilized artificial neural net-

works to learn collective processes in the flux of concentrations of the MAPK signaling pathway.

Here, the learned abstractions were constantly updated to consider a growing number of agents.

As a result, the abstractions lost their validity at some point, they were removed from the sim-

ulation and relearned. (2) In the second implementation, which relied on genetic programming

for learning collective behaviours, the abstractions were not completely revoked when becom-

ing invalid, but they were restored to their previous states. (3) In the third implementation,

observer agents detected group behaviours and managed the resulting abstractions. We demon-
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strated the e↵ectiveness of this implementation in the context of a blood coagulation model.

We proposed two algorithms to monitor the validity of abstractions by comparing the expected

group interactions to the interactions of the actual individuals at regular intervals.

In order to further our approach, we suggest the automatic proliferation of a diverse set of

observer agents based on their workload. An evolution of agents that are primed to identify

frequently occurring patterns could be implemented, yielding a self-organized learning system

that adapts to specific model domains and even to niches inside of simulation spaces.

The relation between group behaviours and emergent phenomena is another promising area

to be investigated in the given context. The possibility to incorporate predefined high-level

patterns should be considered. If patterns are described at di↵erent scales, multi-scale modeling

can be restated as finding transitions from low-level to higher-level patterns.



Chapter 19

Adaptive Agent Abstractions

to Speed Up Spatial Agent-Based

Simulations

Simulating fine-grained agent-based models requires extensive computational resources. In this

article, we present an approach that reduces the number of agents by adaptively abstracting

groups of spatial agents into meta-agents that subsume individual behaviours and physical

forms. Particularly, groups of agents that have been clustering together for a su�ciently long

period of time are detected by observer agents and then abstracted into a single meta-agent.

Observers periodically test meta-agents to ensure their validity, as the dynamics of the simu-

lation may change to a point where the individual agents do not form a cluster any more. An

invalid meta-agent is removed from the simulation and subsequently, its subsumed individual

agents will be put back in the simulation. The same mechanism can be applied on meta-agents

thus creating adaptive abstraction hierarchies during the course of a simulation. Experimental

results on the simulation of the blood coagulation process show that the proposed abstraction

mechanism results in the same system behaviour while speeding up the simulation.

Abbas Sarraf Shirazi, Timothy Davison, Sebastian von Mammen, Jörg Denzinger, and

Christian Jacob. Adaptive agent abstractions to speed up spatial agent-based simulations.

Simulation Modelling Practice and Theory 40 (2014), pp. 144–160.
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19.1 Introduction

Agent Based Models (ABM) provide a natural means to describe complex systems, as agents

and their properties have a convenient mapping from the entities in real world systems. The

interaction of agents in ABM gives rise to an interesting concept in the study of complex sys-

tems: emergent phenomena, higher-level properties or behaviours that are not easily traceable

in the lower-level entities [89]. Moreover, ABM capture discontinuity in individual behaviours,

which is di�cult when modelling with an alternative like di↵erential equations [241].

The flexibility of ABM comes at a computational cost. As the granularity of a model increases,

so do the computational resources needed to simulate all of the interactions among the agents,

which directly translates into longer simulation times. Some researchers have restricted agent

interactions to be only among neighbouring agents in a two or three-dimensional lattice [625,

607]. However, changing the interaction topography among agents is a necessary feature in

some models, e.g. developmental processes [342]. Others have utilized parallel computing to

meet the computational demands of ABM [626, 627]. Finally, many researchers have proposed

super-individuals [259]: agents that encompass other agents, e.g. a single super red blood cell

agent that subsumes and represents thousands of individual red blood cell agents.

In this paper, we extend our previous work by proposing another type of abstraction that

aims to build adaptive hierarchies of spatial agents during the course of the simulations. To

this end, observer agents are immersed in the simulation to monitor groups of agents. The

observers try to detect a cluster of agents that have adhered to one another for a su�ciently

long duration of time. Once an observer finds such a cluster, it abstracts the agents into a

single meta-agent that subsumes both the behaviour and the structure of the individual agents

in that cluster. As the dynamics of the simulation change, groups of agents may no longer

stick together and therefore the observer needs to break down those meta-agents into their

constituent individual agents. An unsupervised validation mechanism ensures the validity of

meta-agents by periodically monitoring whether they should continue to subsume their agents.

Since meta-agents have the same basic definition as the individual agents, the same abstraction

process is applied on them, thus making adaptive abstraction hierarchies during the course of

the simulation.
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The remainder of this paper is organized as follows. Section 19.2 reviews related works both

in solving the problem of scalability and in dealing with higher-order patterns in agent-based

simulations. Section 19.3 gives a formal definition, along with a computational timing analysis

of our component-based agent framework – LINDSAY Composer. Section 19.4 presents our

abstraction framework with a detailed description of the involved steps and algorithms. We

conclude this section with a computational timing analysis of our abstraction. In order to

demonstrate the e↵ectiveness of this approach, we apply it to an agent-based blood coagulation

simulation and report the results in Section 19.5. Finally, section 19.6 provides a comparison

between this work and our previous work, and presents the concluding remarks.

19.2 Related Work

Agent based models operate at the individual level and describe potentially numerous be-

haviours for all of their constituent units. Simulating all of the individual behaviours is there-

fore considered to be extremely computationally intensive [241, 242, 243, 244, 628]. It has been

suggested that abstracting higher-order patterns could reduce the computational complexity of

ABM without introducing much overhead [247, 628, 516]. In this section, we briefly describe

the attempts made to address the problem of scalability and performance in ABM, then we

review the works that motivated this research.

19.2.1 Scalability and Performance in ABM

Bonabeau points out that despite increasing computational power, simulating all the individual

behaviours in ABM still remains a problem when it comes to modelling large-scale systems

[241]. Research in improving the scalability of ABM is roughly categorized into two groups:

(1) parallel computing, and (2) grouping similar agents into a single agent.

The first category, parallel computing, tries to concurrently simulate clusters of agents that

interact primarily with one another without much intra-cluster communication. E�ciency is

improved as long as the time spent on synchronization is much less than the time spent on

computation [626]. Scheutz and Schermerhorn developed a framework with two algorithms for

the automatic parallelization of ABM [626]. Particularly, they developed a separate algorithm
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for spatial agents, as their location data can e�ciently determine in what cluster they should

be simulated.

Along the same line, Lysenko and D’Souza propose a framework to use Graphics Processing

Units ( GPU) to parallelize an agent-based simulation [627]. They utilize a technique in General

Purpose Computing on GPUs called state textures [629] to map each agent to a pixel. A pixel

is defined by its colour components: Red, Green, Blue, and Alpha (RGBA). Each numerical

property of an agent is thus mapped to a colour component. If an agent cannot be squeezed

into four floating point values, then extra colour bu↵ers should be used, which in turn adds to

the complexity of the problem.

The second category of grouping similar agents deals with the granularity of an agent. For

example, super-individuals can represent groups of agents. Sche↵er et al. suggest assigning an

extra variable to each agent to denote how many agents it represents [259]. More advanced

algorithms have been proposed to find super-individuals during the course of a simulation.

Stage et al. propose an algorithm called COMPRESS to aggregate a cluster of agents into one

agent [513]. They divide their algorithm into two stages to avoid applying a time-consuming

clustering algorithm on the space of all the attributes in all the agents. In the first stage, they

calculate a linear combination of attributes l
i

for each agent i by applying principal component

analysis (PCA) [260]. Then this list is sorted to find n clusters of agents with the largest gaps

in l
i

. In the next stage the clusters are further subdivided based upon their variance until the

variance is within a given range. The first stage maintains overall system variations while the

second stage reduces the intra-cluster variations.

COMPRESS is a static algorithm, in that once a cluster of agents is replaced by one agent,

the original agents will not be released back into the simulation. Wendel and Dibble extend

the static COMPRESS algorithm with the Dynamic Agent Compression (DAC) algorithm in

which higher-order agents are created and destroyed based on the heterogeneity of agents in

the system [514]. They define two special agents in their system: (1) container agents which

are the higher-order agents, and (2) a compression manager which handles all the queries

to individual agents thus making the container agents invisible to the model. It also creates

and destroys other agents. For example, upon receiving a create request from the model, the

compression manager decides if it has to create a new individual or whether the create request

can be ignored, as there already exists an agent with the same attributes. In DAC, a container
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agent monitors its encompassed agents, and upon detecting a di↵erence in behaviour, gives the

changed agents to the compression manager as newly instantiated individuals.

In a previous work [516], we have shown the speedup in the simulation by abstracting individual

rules in the agents. Particularly, we replace many individual rules with one stochastic meta-rule

that only depends on the simulation time step. To that end, observers are preconfigured to

monitor certain rules in the simulation. The observers look for interaction patterns, i.e rules

whose action is executed with constant parameters. Once an observer successfully identifies

an interaction pattern, it acts as a meta-agent and replaces all the individual rules previously

maintained by the agents by a new stochastic meta-rule. Although this abstraction does not

create agent hierarchies, it results in a speedup in the simulation.

19.2.2 Higher-Order Patterns in ABM

Emergence is the appearance of macro level patterns in a system that are not described by

the properties of its parts [278]. According to Müller [630], an emergent phenomenon is either

observed by an external observer (weak emergence), or by the agents themselves (strong emer-

gence), provided that they have the knowledge to describe it. ABM provide a basis to observe

emergent phenomena, as the behaviour of the modelled system can be traced during the exe-

cution. In this sub-section, we describe a few examples of higher-order, emergent phenomena

modelled with ABM.

Cellular automata are one of the most widely used tools to study macroscopic patterns that

emerge from the discrete, microscopic interactions in a 2D or 3D lattice [631]. While continuous

models (e.g. di↵erential equations) fail to capture the essentials of certain problems like self-

reproduction of cells, such phenomena can be studied when modelled as cellular automata [632].

Although each agent is restricted to interact with its local neighbours, numerous higher-order

patterns have been studied using cellular automata, such as self-organization in Conway’s Game

of Life [633], pattern formation in biological systems [634], engineering applications [635], and

medical simulations [636].

ABM can mimic the behaviour of mathematical models and at the same time they give more

power to the modeller. Bonabeau states that there is not much experimental work in the field

of pattern formation in spite of a large body of theoretical analysis [637]. He claims that ABM
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can bridge this gap, as they are amenable to experimental observations. Subsequently, he shows

how to derive the equivalent agent-based representation of a reaction-di↵usion model. Agents in

his model perform a random walk and interact with the environment by depositing or removing

bricks at a rate calculated from the mathematical formula of a reaction-di↵usion system. He

takes the agent-based model beyond its original reaction-di↵usion system by replacing the

state-dependent variables with short and long term memories in the agents.

Generally, higher-order patterns emerge when spatial agents act as a group. For example, in

crowd modelling, groups of people tend to walk together while keeping their distance from

other groups [638, 639]. Social segregation [640] is another example in which di↵erent social

(ethnical, racial, or religious) groups tend to avoid other groups. Studying these systems

promotes tolerance and social integration [641]. In an example from biological systems – blood

coagulation – the adhesion of platelet and fibrinogen molecules leads to the formation of a blood

clot within a damaged blood vessel wall [642]. One may observe a clot as an emergent entity

formed as the result of interactions among several other smaller entities [605].

19.3 Agent Formalism

In this section, we formally describe our concept of agents. A formal definition of agents helps

us clarify our component-based agent architecture, e.g. how we define an agent with regards to

its constituent components, the interdependency among components, etc. It further provides a

basis to analyze the computational complexity of our simulations. The timing analysis is used

in the next section to study the benefit of the abstraction mechanism in improving the run-time

of a simulation.

We use a generic definition of agents and show how our component-based composition of an

agent fits into this definition. In our framework, an agent is defined by a 4-tuple:

agent = (Sit,Act,Dat, f) (19.1)

where Sit is the set of situations the agent can be in, Act is the set of actions that it can

perform, Dat is the set of value combinations for its internal data areas, and f is a decision

function [279]. At any point in time an agent decides what actions to perform based on its
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current situation and its internal data. This decision is captured by the decision function

f : Sit⇥Dat! Act.

We employ the component-based approach introduced in LINDSAY Composer [305, 540] to

construct the agents in our simulations. A component, compi, is a mini-agent that can be

combined with other components to create agents with aggregate functionalities:

compi = (Siti,Acti,Dati, f i) (19.2)

With this in mind, an agent is re-defined as the composition of several components:

agent = hcomp1, comp2, · · · i (19.3)

Sitagent ✓ Sit1 ⇥ Sit2 ⇥ · · · (19.4)

Actagent ✓ Act1 ⇥Act2 ⇥ · · · (19.5)

Datagent ✓ Dat1 ⇥Dat2 ⇥ · · · (19.6)

fagent = hf 1, f 2, · · · i = hf 1 : Sit1 ⇥Dat1 ! act1, f 2 : Sit2 ⇥Dat2 ! act2, · · · i (19.7)

where Sitagent is a subset of all the combinations of Siti in the components of an agent. While

Actagent and Datagent are defined similar to Sitagent, fagent is defined as a vector of all the

decision functions. In other words, all the actions chosen by the individual decision functions

will be executed by the agent. It should be noted that there is no internal conflict resolution

between conflicting actions. It is up to the system builder to avoid composing conflicting

actions.

Behaviour components use a rule-based architecture in whichDat is re-written as Intvar⇥RS,

where Intvar is a set of values for internal variables and RS is a set of interaction rules, as

defined in Equation (19.8).

RS = {(r
1

, ..., r
k

) | r
i

: if condition
i

then execute act
i

} (19.8)

where act
i

2 Act, and condition
i

is a statement about the situation the agent is in and the

actual values of the variables in Intvar.
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Figure 19.1: An example of a red blood cell agent which is composed of transform, graphics,
physics, and behaviour components. (a) The internal data in each component, (b) The inter-
dependency of the sibling components in the hierarchy is denoted by dashed lines. Tr, Gr, Ph,
and Be stand for the transform, graphics, physics, and behaviour components, respectively.

For example, the red blood cell agent in Figure 19.1(a) is defined as a combination of four sibling

components. (1) A transform component containing all the information necessary to represent

an agent in a three-dimensional space. (2) A graphics component with the data about how to

render this agent, e.g. the mesh data. (3) A physics component containing all the physical

properties like the mass and friction, which enables this agent to undergo physical interactions

with other physical agents. (4) A behaviour component which includes the set of interaction

rules RS.

A component may depend on the situation or the data of another component. The dependency

of a component to other components is encoded in its Sit and Dat, i.e. there might be Siti,

Dati, or subsequently f i in a component that looks up areas in Sitj and Datj of another

component. In Figure 19.1(b), the graphics component depends on the transform component

to render a mesh while the physics component updates the same transform component once a

physical force is applied to this agent. The physics component might also be used to trigger

the execution of a custom rule, e.g. an action by the agent when it collides with another agent.

Components in LINDSAY Composer may delegate their decision functions to an engine which

in turn drives their execution at each frame of the simulation. Specifically, a component may

decide to share any of its Siti, Dati, Acti, or f i with an engine. The link between a component

to an engine is also encoded in Dati, which specifies what engine to delegate to, along with

the parameters for that engine. This design explicitly formalizes the link between components

and engines. It also gives the components the freedom to share an engine or to instantiate new
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Figure 19.2: Three default engines in LINDSAY Composer drive the execution of components
within agents.

engines based on their needs.

LINDSAY Composer includes the following default core engines which are instantiated once the

simulation starts: (1) the graphics engine which renders all the graphics components onto the

screen, (2) the physics engine which handles all the physics components, and (3) the behaviour

engine which executes the rules in the behaviour components. In the simple scenario of a single

scale simulation, each engine iterates through its components and updates them at each frame.

Figure 19.2 shows how each engine drives the execution of the delegating components.

The explicit formalism of components, agents, and engines in LINDSAY Composer makes it

easy to analyze the performance of the agent-based simulations. The time required to simulate

an agent-based model in LINDSAY Composer with a single processor is defined as follows:

TotalT ime = T
init

+
TX

t=1

Stept (19.9)

Stept =
X

i

stept(eng
i

) (19.10)
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where the initial time, T
init

is the time spent only at the beginning of the simulation – for

example to instantiate the default engines – and T is the length of the simulation.

The graphics and physics engines are usually well-optimized, as their functionality is limited

to rendering and calculating the physical forces acting upon objects. On the other hand, the

behaviour engine is where every custom behaviour of an agent is executed, and is therefore the

bottleneck of the simulation. As a result, we only focus on the performance of the behaviour

engine:

Stept = stept(BehaviourEngine) =
NX

i=1

BCompt,i =
NX

i=1

R

iX

j=1

rt,i
j

(19.11)

where N is the number of behaviour components, BCompt,i is the ith behaviour component

and rt,i
j

is the jth interaction rule in BCompt,i at time step t.

Without loss of generality, one can assume that all behaviour components have the same number

of interaction rules, i.e. R = max(Ri). The asymptotic complexity of simulating the behaviour

engine at each time step is calculated as follows:

O(Stept) =
NX

i=1

O(BCompt,i) =
NX

i=1

RX

j=1

O(rt,i
j

) =
NX

i=1

RX

j=1

O(1) = N ⇤R (19.12)

Equation (19.12) is a lower bound of O(Stept) since it assumes that the computational com-

plexity of executing each interaction rule is O(1). This assumption is correct when it takes

O(1) for an agent to check the condition of a rule. In other cases, agents might need to iterate

over every other agent in the simulation to check whether the condition part of a rule holds or

not, hence Equation (19.12) changes to O(Stept) = N2 ⇤R. This formula clearly shows that the

run-time of a simulation mainly depends on (a) the number of agents in the simulation, and

(b) the number of interaction rules for each agent. It can also be inferred that simulating all

the behaviours for all the agents requires a great deal of computational resources. We propose

an abstraction mechanism to address this issue, which is discussed in the next section.
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Figure 19.3: The three rules – Log, Learning & Abstraction and Validation – inside an
observer are executed at specific time steps.

19.4 Adaptive Abstraction of Spatial Agents

The goal of the proposed abstraction is to adaptively reduce the number of agents – N in Equa-

tion (19.12) – during the course of the simulation. We immerse observer agents, or observers, in

the simulation to monitor the agents and learn their adhesion patterns. Observers are defined

the same way any other agent in the system is defined, i.e. through Equation (19.3) with only

one behaviour component. The behaviour engine executes the rules in the observers at each

time step during the course of the simulation.

Each observer has three rules in its behaviour component (Figure 19.3). An observer constantly

monitors the simulation space and logs certain information about agents and their interactions.

Once enough information is logged (t > t
wait

), the observer tries to detect and learn an adhesion

pattern that describes which agents have been sticking together. If this pattern is detected,

the observer creates a meta-agent that subsumes other individuals or meta-agents. In order to

validate the behaviour of their meta-agents, observers periodically check whether the deploy-

ment of the subsumed individual agents yields an outcome di↵erent from the predictions of

the learned pattern. If the discrepancy between these two outcomes exceeds a given threshold

⌧
conf

, the observer destroys the meta-agent and restores the subsumed individual agents. The

process of learning and validating happens periodically resulting in an abstraction hierarchy

that is adaptive over the course of a simulation.
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Table 19.1 summarizes the conditions and actions for each rule. We describe each of the rules

in Table 19.1 in the following subsections, and then we present a computation analysis of our

abstraction mechanism.

Table 19.1: Three rules of each observer along with their condition and action.

Name Condition Action

Log always

UpdateGraph: logs
information about
agents and their
interactions

Learning
& Ab-
straction

(t > t
wait

) && (t
mod t

learn

)

Abstract: detect
patterns and create
meta-agents

Validation
V
interval

 t  V
interval

+
V
length

Validate: validate
meta-agents

19.4.1 The First Rule: Log

Observers are configured to maintain an adhesion graph G
Adhesion

= (V,E) whose nodes are

the agents in the simulation. An edge e
ij

between two agents denotes the strength of their

adhesion, i.e. the longer two agents stick together, the larger the weight of their edge w
ij

is.

At every time step, an observer loops through the agents it is monitoring and updates the

adhesion graph based on Algorithm 4.

Algorithm 4 The Action: UpdateGraph(G = (V,E))

1: for all Agent agi do
2: compi

physics

= agi.getDependency(PhysicsComponent);
3: partners = compi

physics

.collisionPartners();
4:

5: for all Agent j in partners do
6: w

ij

 w
ij

+�
inc

;
7: end for
8:

9: for all Agent j in V
i

do
10: {V

i

is the set of neighbours in G for agi}
11: if (w

ij

> 0) && (j /2 partners) then
12: w

ij

 w
ij

��
dec

;
13: end if
14: end for
15: end for
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UpdateGraph is the action of this rule that updates the adhesion graph. For each monitored

agent agi, its sibling physics component compi
physics

is fetched (line 2) to get the partners it is

colliding with. Then for each collision partner j, the value of the edge between the two agents

is incremented by some value �
inc

(line 6). There might be other agents that were colliding

with agi in previous time steps which are not colliding any more at this time step. Therefore,

their corresponding edge should be decremented by a larger number (�
dec

> �
inc

) to ensure

that once two agents stop colliding, their corresponding edge will be quickly set to zero. This

number could also depend on the current value of an edge, but for simplicity we set it to be a

constant number.

19.4.2 The Second Rule: Learning & Abstraction

An observer maintains an adhesion graph of agents. At certain intervals (t
learn

), the observer

finds clusters of agents that have adhered to one another for a su�ciently long duration of time,

and subsequently, creates a meta-agent that subsumes the individual agents in each of these

clusters. Since the structure of the meta-agents is the same as that of the individual agents,

the same process can be applied to meta-agents, thus creating abstraction hierarchies during

the course of the simulation.

Abstract is the action of the Learning & Abstraction rule which is described in Algorithm

5. It first creates another graph G0 by removing all the edges in the adhesion graph G whose

weight is less than some threshold ✓ (line 1). In this new graph, an edge between two agents

means that they have been sticking together for an adequately long time. In the next step,

we find all the connected components in this graph. Each cluster of agents in a connected

component will be subsumed by a meta-agent.

Figure 19.4(a) illustrates an example of learning in which there are five agents in the simulation

space. Agents A, B, C, and D are colliding while agent E is detached. Figure 19.4(b) shows the

adhesion graph of an observer that is monitoring this simulation. Assuming that ✓ is 100, the

new graph G0 is constructed by removing the edge between Agents C and D whose value is 35.

In the next step (line 2), the connected component algorithm finds a cluster that contains more

than one agent (Figure 19.4(c)). Subsequently, a meta-agent M is created and the adhesion

graph G is updated to reflect the subsuming meta-agent (Figure 19.4(d)).
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Algorithm 5 The Action: Abstract(G, ✓)

1: G0 = (V, {e
ij

: 8e
ij

2 E s.t. e
ij

> ✓});
2: clusters = connectedComponents(G0); {each cluster: a set of agents}
3: for all Set<Agent> aCluster in clusters do
4: if aCluster.size()  1 then
5: continue;
6: end if
7: Agent meta agent = new Agent();
8: {composing the hierarchy of the meta agent}
9: TransformComponent meta transform = new TransformComponent();
10: PhysicsCompositeComp meta body = new PhysicsCompositeComp();
11: BehaviourComponent meta behaviour = new BehaviourComponent();
12: meta agent.add(meta transform);
13: meta agent.add(meta body);
14: meta agent.add(meta behaviour);
15: for all Agent anAgent in aCluster do
16: meta agent.add(anAgent);
17: for all Component comp in anAgent do
18: if isGraphicsComponent(comp) then
19: continue; {nothing happens to the graphics component}
20: end if
21: if isPhysicsComponent(comp) then
22: comp.active = false; {the physics component is disabled}
23: {and attached to the composite meta body}
24: meta body.attach(comp);
25: end if
26: if isTransformComponent(comp) then
27: meta transform.origin += comp.origin;
28: comp.makeRelativeTo(meta transform);
29: end if
30: if isBehaviourComponent(comp) then
31: comp.active = false;
32: for all Rule r in comp do
33: if meta behaviour.contains(r) == false then
34: meta behaviour.add(r);
35: end if
36: end for
37: end if
38: end for
39: end for
40: meta transform.origin /= aCluster.size(); {making the average}
41: {the addition of meta agent will be reflected in G, c.r. Fig. 19.4(d)}
42: update(G, meta agent);
43: state = waitToValidate; {setting up the validation mechanism}
44: conf

initial

= 50%;
45: end for
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Figure 19.4: (a) Five agents in the simulation space. (b) The adhesion graph G maintained
by the observer. (c) The modified graph G0 in which weaker links (w

ij

< 100) are removed.
(d) The new adhesion graph G is constructed by replacing agents A, B, and C with the new
abstract agent M and restoring the previous connections in the old adhesion graph.

The components of the new meta-agent are configured as follows:

1. The behaviour component is the aggregation of all the unique rules in the subsumed

agents.

2. A physics composite component encompasses individual physics components. From now

on, the physics engine calculates the forces on this composite structure instead of the

individual structures.

3. The origin of the transform component is the average origin of all the subsumed agents.

Since the graphics component depends on a single transform component as its sibling, we

do not disable individual transform components. In addition, all the transform compo-

nents in the subsumed agents will become relative to the meta-agent’s transform compo-

nent to ensure proper movement of all the sub-parts when the meta-agent moves.

Figure 19.5 shows the representative data structures of the three subsumed agents in Figure

19.4, along with the structure of the meta-agent. Since the graphics engine requires that only

one transform component be present as the sibling of each graphics component, the meta-agent

also maintains each parent individual agent along with its transform and graphics components.

The e�ciency gains are a result of aggregating the rules in the behaviour component of each
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Figure 19.5: Three agents A, B, and C are subsumed by a meta-agent M . The meta-agent
aggregates unique rules in its behaviour component resulting in a reduction of 10 individual
rules to 4 rules in M .

individual agent into the meta-agent such that only the unique rules are added to the meta-

agent.

The newly created meta-agents have a behaviour and a physics component, which enable them

to undergo physical interactions as a whole, and also to execute their rules at each time step.

This scale-free representation of meta-agents allows for further abstractions, as meta-agents are

not any di↵erent from individual agents, and therefore they can be abstracted in the same way.

For example, Figure 19.6 shows the next learning cycle in which agents D and M form the next

meta-agent N .

An important consideration is to make sure that meta-agents show valid behaviours, as the dy-

namics of the system might change and individual agents might not stick together any longer.

In this case, a validation mechanism should be in place to ensure that the meta-agent is de-

stroyed and the individual agents are returned to the simulation. To this end, the observer sets

up the starting state for the validation phase at the end of Algorithm 5. Also, it assigns an

unbiased confidence value (conf
initial

= 50%) to the learned hierarchy (line 44). The validation

mechanism is discussed in the next section.
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Figure 19.6: Assuming that agent D has the same structure as that of agent A, agents D and
M form the new meta-agent N in the next learning cycle.

19.4.3 The Third Rule: Validation

After some time, a learned hierarchy might not be valid any more. The observer needs to

ensure that a learned hierarchy is valid to be simulated. As the abstraction is an online process

taking place as the simulation proceeds, there is no future expected data to conduct a supervised

validation algorithm. As a result, the observer has to rely on unsupervised measures to validate

a learned pattern. One such measure is the discrepancy between the outcome of the expected

behaviour and the deployed behaviour of a learned hierarchy.

Algorithm 6 shows the proposed validation mechanism. At regular time intervals V
length

, the

observer releases a subset of the abstracted agents back into the simulation (line 6). After

the validation period V
length

, the observer re-abstracts those test agents (line 13) and regulates

the confidence value (line 16) based on the di↵erence between the behaviour of the test agents

compared to the behaviour expected by the observer. In particular, if the individual test agents

stick together in the validation period, the confidence value will be increased. A confidence

measure below a given threshold indicates that a learned hierarchy is not valid any longer and

that the observer has to break the learned abstraction by releasing its subsumed agents into

the simulation (line 20).
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Algorithm 6 The validation algorithm

1: {t is the simulation time step}
2: if (state == waitToValidate) && (t mod V

interval

== 0) then
3: state = validating ;
4:

5: {undo the abstraction for a subset of abstracted agents}
6: testAgents = undoAbstraction(V

ratio

);
7: end if
8:

9: if (state == validating) && (t mod (V
interval

+ V
length

) == 0) then
10: state = waitToValidate;
11:

12: {re-abstract test individuals}
13: reAbstract(testAgents);
14:

15: {regulate the confidence value based on the performance of individuals against what was
expected}

16: conf = regulate();
17:

18: {if the confidence is less than a threshold, break down the learned abstraction}
19: if conf < ⌧

conf

then
20: breakAbstraction();
21: state = noValidation;
22: end if
23:

24: end if

19.4.4 Computational Analysis of the Proposed Abstraction Mech-

anism

The introduction of observers adds an overhead to the run-time of the simulation. On the

other hand, a successful abstraction should reduce the run-time shown in Equation (19.12).

Therefore, an analysis to identify the parameters of the abstraction is necessary. To this end,

we define the run-time of a simulation in the presence of an observer as follows:

Stept = N 0 ⇤R + Stept(log) + Stept(learn) + Stept(validate) (19.13)

N 0 = ↵N +M (19.14)

where N 0 is the number of agents in the simulation, ↵ is the percentage of the unsubsumed

agents and M is the number of meta-agents. Ideally, we want to abstract as many agents as
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possible (↵! 0%) into a single meta-agent (M = 1).

Calculating the timing for the first rule is straight-forward. Since each individual agent has a

bounded number of collision partners, the inner loops in Algorithm 4 are executed in constant

time and therefore, Stept(log) is equal to the number of agents in the system, i.e. Stept(log) =

N 0.

The performance of the second rule depends on how the adhesion graph is implemented. Gen-

erally, finding connected components in a graph G = (V,E) requires O(|V |+ |E|) where |V | is
the number of nodes in the graph, i.e. N 0 in the adhesion graph. Assuming that the addition of

the unique rules in the behaviour component of a meta agent requires O(R), the time required

to execute the second rule is calculated as follows:

Stept(learn) =

8
<

:
N 0 + |E|+N 0 ⇤R if (t mod t

learn

) == 0

0 otherwise
(19.15)

where |E| is the number of the edges in the adhesion graph and R is the maximum number of

interaction rules in a behaviour component.

The last rule – validation – simply involves monitoring a subset of subsumed agents in meta-

agents and requires the following time:

Stept(validate) =

8
<

:
V
ratio

(1� ↵)N if V
interval

 t  V
interval

+ V
length

0 otherwise
(19.16)

where V
ratio

is the percentage of the subsumed agents whose original structure is restored in

the validation cycle.

19.5 Experiments

The proposed self-organized learning and abstraction method can be employed in any agent-

based simulation in which individual agents form groups of agents by sticking together spatially.

Biological simulations are particularly suitable applications as biological entities are formed

from the aggregation of smaller entities. Our agent-based framework, LINDSAY Composer

is a part of LINDSAY Virtual Human [540] – a 3-dimensional model of human anatomy and
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Figure 19.7: The blood coagulation simulation is a part of a family of simulations, designed to
study the circulatory system in LINDSAY Virtual Human.

physiology. Blood coagulation is one of the early simulations implemented in this framework,

which belongs to a family of simulations to study the circulatory system (Fig. 19.7). While

explaining the circulatory system and its simulation is beyond the scope of this paper, we

applied our proposed method to an agent-based simulation of blood coagulation, which will be

described in the next subsection.

19.5.1 Model Setup

Blood coagulates at wound sites because of the interplay of various bio-agents such as platelets,

fibrinogens, and serotonins. If a collagen protein around the wound site collides with a platelet,

the platelet becomes activated. In case that an activated platelet collides with the wound site, it

secretes several chemicals which in turn activate more platelets in the blood vessel. Gradually,

a network of fibrinogens together with a platelet plug form a clot around the wound site, as

shown in Fig. 19.7(c)1.

1The blood coagulation simulation in this paper extends the experiment reported in [516]. It also lists all
the agent structures, along with their rules and parameters. The time it takes to form a clot is di↵erent in each
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Table 19.2: Agent description

Agent Types Description

Platelet, Fib-
rinogen, Sero-
tonin, and
Thrombin

Their interaction results in the formation of
the clot.

Red and White
blood cells

They participate in the formation of the clot
by getting stuck in the wound site.

Destructor
Removes the agents it is colliding with from
the simulation.

Emitter
Adds new agents into the simulation space
and positions them randomly in a pre-defined
volume.

Flow field
Applies a fluid flow force onto the agents thus
moving them along a given direction.

Blood Vessel
Defines a volume in which the flow fields
move other agents.

Wound The wound site that interacts with platelets.

We identified eleven agents for this simulation, as listed in Table 19.2. Figure 19.8 shows

the initial setup of the agents that exist at t = 0. The emitter agent produces platelets and

fibrinogens and randomly positions them in a small volume at the right side of the blood vessel.

A horizontal flow field moves all the platelets and fibrinogens along the blood vessel. There is

a vertical flow field that pushes the agents to exit through the wound hole. Consequently, the

agents exit the blood vessel either through the wound or once they reach the end of the blood

vessel. Once the agents exit the blood vessel, they are no longer needed in the simulation and

removed by the two destructors at both exits.

Most of the agents in Table 19.2 have a behaviour component consisting of a set of rules. Agents

can share some rules while at the same time having their own unique rules. Although thrombin

and serotonin agents, and also red and white blood cell agents share the same behaviour rules,

they collide with other agents in di↵erent ways, since their physical structures are di↵erent. In

the following, we describe the rules for each agent:

Platelet

r
1

: Self Activation

experiment as a result of di↵erent values of the parameters, which makes them non-identical.
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Figure 19.8: The simulation state at t = 0, the emitter agent produces platelets and fibrinogens
which are moved by the flow fields inside the blood vessel. There is a hole in the wound site
through which some agents exit the blood vessel. Two destructors remove agents that are not
needed any longer.

if (agent is deactivated) AND (agent is colliding

with either an activated platelet or the wound)

then activate the agent

r
2

: Fibrinogen Activation

if (agent is activated) AND (agent is colliding

with a deactivated fibrinogen)

then activate the colliding fibrinogen

r
3

: Adhesion-1

if (mass > 0) AND (agent is activated) AND (agent

is colliding the wound)

then set mass to 0

r
4

: Adhesion-2

if (mass > 0) AND (agent is activated) AND (agent

is colliding with an activated platelet or an

activated fibrinogen)

then set mass to 0

r
5

: Secretion

if (agent is activated) AND (rand() > 3%)

then secrete randomly a new thrombin or serotonin
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r
6

: Random Walk

if (TRUE) then random walk in the space

Fibrinogen

r
1

: Self Activation: same as r
1

in Platelet

r
2

: Adhesion-1: same as r
3

in Platelet

r
3

: Adhesion-2: same as r
4

in Platelet

r
4

: Random Walk: same as r
6

in Platelet

Thrombin and Serotonin

r
1

: Chase

if (TRUE) then accelerate toward a randomly

selected, deactivated platelet

r
2

: Random Walk same as r
6

in Platelet

Destructor

r
1

: Destruct

if (agent is colliding with another agent)

then remove the colliding agent

from the simulation

Emitter

r
1

: Generate

if (t mod 15) then generate 2 platelet and

2 fibrinogen agents with random positions

Flow field

r
1

: Move

if (TRUE) then apply a physical force on all the

agents inside the given volume

Red and White Blood Cell
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Figure 19.9: Run-times of the three engines along with the number of agents per simulation
time step. The run-time of the graphics engine is almost at zero.

r
1

: Random Walk: same as r
6

in Platelet

We ran the simulation for 1500 time steps 10 times. Each simulation started with 3 agents

and ended with nearly 180 agents. Figure 19.9 shows the run-time of the three engines in the

simulation. It confirms our previous claim that the behaviour engine is the bottleneck of the

simulation. The physics and the graphics engine have a constant run-time independent of the

number of the agents while the run-time of the behaviour engine grows approximately linearly

with the number of agents. The linear growth of the run-time of the behaviour engine stems

from the fact that none of the rules actually search in the list of the agents, hence it follows

the asymptotic complexity of O(N ⇤R), as explained in Section 19.3.

19.5.2 Observer Setup

In addition to the individual agents, we add one observer to the simulation. Table 19.3 lists

all the important parameters in our system. The observer monitors the simulation space and

updates the adhesion graph based on Algorithm 4. After the observer monitors the simulation

long enough (t
wait

), at specific intervals (t
learn

) it finds the connected components and subse-

quently, creates the meta-agents. The meta-agents subsume the individual agents according
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Table 19.3: System parameters

Parameter Name Symbol Value

Adhesion incremental weight �
inc

1
Adhesion decremental weight �

dec

5
Delay before learning t

wait

400
Learning interval t

learn

100
Cuto↵ threshold for the adhesion graph ✓ 200

Validation interval V
interval

50
Validation length V

length

10
Validation ratio V

ratio

10%
Confidence threshold ⌧

conf

0.4

to Algorithm 5. In predefined intervals, V
interval

, the observer randomly chooses a subset of

the subsumed individuals in every meta-agent and restores their original hierarchy. The size of

this subset is determined by V
ratio

. After some time, V
length

, the observer puts the individual

agents back in the subsuming meta-agent and validates its abstractions based on the resulting

interactions compared to the expected result. The confidence of the learned pattern is regu-

lated accordingly. If the confidence of a pattern is less than some threshold ⌧
conf

, the according

meta-agent will be removed and its subsumed agents will be put back in the simulation.

19.5.3 Results

Figure 19.10(a) shows the run-time of the behaviour engine in the presence of the abstraction

mechanism. Compared to the normal run of the simulation (Figure 19.9) in which there are

almost 180 agents at the end of the simulation, the abstraction mechanism reduces this number

to 120. Speeding up the simulation is the immediate result of this abstraction. The larger peaks

in Figure 19.10(a) denote the learning intervals (t
learn

) while the smaller peaks happen at the

validation phase (V
length

). Figure 19.10(b) depicts the cumulative run-time of the simulation

comparing a normal run against a run with the observer. Adding the observer introduces no

measured overhead while at the same time reducing the total run-time of the simulation from

180 seconds to 140 seconds resulting in a 20% reduction of the run-time.

Figure 19.11 shows the agent adhesion graph in a sample run at t = 900, in which five connected

components are distinctive by their colours. There are 37 agents in the biggest cluster (enclosed
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Figure 19.10: Run-time with and without the observer, (a) Run-time per simulation time step,
(b) Cumulative run-time.
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by a dashed line) consisting of 16 platelets, 9 fibrinogens, 9 red blood cells, and 3 meta agents.

Together, they have 16⇤6+9⇤4+9⇤1+3⇤6 = 159 rules. On the other hand, the resulting meta-

agent will only have 6 rules, as fibrinogens and red blood cells share the same rules defined in a

platelet. Therefore, creating a new meta-agent will reduce the number of rules to be checked by

153. This reduction in the number of rules is mainly responsible for speeding up the simulation.

To verify that the abstraction mechanism produces the same or a similar behaviour as that of

a normal simulation, we studied how the clot is formed during the course of the simulation.

The clot concentration simply measures how many platelets, fibrinogens, or red blood cells are

attached to the wound. We compare the result of ten normal runs of the simulation against ten

runs of the simulation with the abstraction and report the result in Figure 19.12. This result

suggests that the choice of values for the parameters resulted in the same system behaviour

while at the same time speeding up the simulation.

To further study the validation mechanism, we introduced an abrupt change in the behaviour

of the simulation at t = 1000, when we dissolve the clot by detaching the agents from the

wound. As a result, there will be almost no platelet, fibrinogen, or red blood cell attached

to the wound at t = 1200. We undo this new change at t = 1500 to let the clot form again.

Figure 19.13 compares the behaviour of our proposed abstraction mechanism with that of the

original simulation. The validation mechanism ensures that the system behaviour will adapt to

the changes in the simulation – turning the validation o↵ would result in an inaccurate system

behaviour.

19.6 Discussion and Conclusion

We introduced the concept of abstraction to boost the speed of agent-based simulations by

means of a light-weight observer agent that monitors the simulation space and abstracts groups

of individual agents to higher-order meta-agents which in turn are subject to further abstrac-

tions. While the notion of observers, along with the steps to do an abstraction are shared

between this work and our previous work [516], there are substantial di↵erences between them:

1. The agent framework is explicitly defined in this work. This enables us to find the

computational complexity of our agent-based simulations, with or without an abstraction
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Figure 19.11: The agent adhesion graph in a sample run at t = 900 in which there are 5 clusters
of connected components, in which the biggest cluster is enclosed by a dashed line. The weight
of an edge between two nodes denotes the strength of their adhesion.
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Figure 19.12: System behaviour in terms of the clot concentration, i.e. the number of platelets,
fibrinogens, and red blood cells around the wound, reported over ten runs of the simulation
with and without the proposed abstraction mechanism.
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mechanism.

2. The objective of the work presented here is to create agent hierarchies by constantly

abstracting many individual agents to one meta-agent, which can go under the same

abstraction. In contrast, the algorithm in [516] abstracts many individual rules into one

meta-rule, which does not change the agent structure. More precisely, the goal of this

newly proposed abstraction mechanism is to reduce N in Equation (19.12), while the goal

of our previous abstraction was to reduce R in Equation (19.12).

3. The proposed abstraction in this paper only works on spatial agents. It uses the no-

tion of proximity among agents as a heuristic indicator to abstract them. Our previous

abstraction mechanism can work on any type of agents [516].

4. The observers in this paper maintain a directed graph of agents. The weight of an edge

between two agents denotes their proximity strength. We apply a connected component

algorithm in the learning phase to find a group of agents. The observers in [516] maintain

a list of executed rules; they apply a k -means algorithm to find a dense cluster of rules

whose parameters are constant. In the validation step, an observer in this work puts

back a few abstracted agents in the simulation while an observer in [516] re-activates an

individual rule in a few selected agents. Therefore, although both abstractions have three

rules – Log, Learning & Abstraction, and Validation – their actual implementations

are completely di↵erent.

Our proposed abstraction mechanism was applied to an agent-based simulation of blood coagu-

lation, in which bio-agents stick together to form a clot around the wound site thus preventing

further bleeding. We showed that the adaptive abstraction results in the same system behaviour

but with a 20% faster run-time. We emphasized the role of our unsupervised validation algo-

rithm to ensure the validity of meta-agents.

The proposed abstraction mechanism creates self-organized, dynamical hierarchies during the

course of a simulation. Studying the emerging patterns in such hierarchies is of great inter-

est, particularly in the case of biological simulations in which new entities at higher levels are

formed as the result of interactions among lower level entities. For multi-scale modelling, a

stable, higher order entity can be used in other time or spatial scales to manage the compu-
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tational burden of the simulation. This could eliminate the need for exponential increases in

computation power to model such systems.



Chapter 20

Bring it on, Complexity!

Present and Future of self-organising

Middle-out Abstraction

Sebastian von Mammen, Jan-Philipp Steghöfer. The computer after me: Awareness

and self- awareness in autonomic systems, ch. Bring it on, Complexity! Present and

future of self-organising middle-out abstraction, pp. 83–102, World Scientific Press, 2014.

20.1 The Great Complexity Challenge

The inherent complexity of many man-made or naturally occurring challenges—such as under-

standing the influence of human interference in ecosystems or interacting biological processes—

is widely acknowledged. The ubiquitous networking paradigm has highlighted the elaborate

webs of interactions and interdependencies between living beings, objects and processes. Yet

we still lack an algorithmic framework capable of tackling the complexity of the world in terms

of representation and computation. Thus, any step toward understanding—and predicting—

the dynamics and emergent phase transitions of complex systems would greatly contribute to

the advancement of science. Present-day societal challenges that could benefit from this kind of

knowledge are plentiful, and can be found in fields ranging from the life sciences to economics

391
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and engineering. To some extent, the mathematical analysis of complex systems can provide

some insights about the phase transitions that may occur over time [643, 644]. However, this

approach requires a great deal of e↵ort and does not scale well, becoming intractable as the

number of factors involved in a system increases.

What is more, the interactions that drive system transitions have to be identified and formalised

a priori by the modeller. In contrast, an ideal model building process should require as little

information as possible about a system’s actual behaviour. It should be enough to only describe

how the parts of a system interact, without building in any assumptions about when feedback

cycles might be triggered to snowball into fundamental global system changes. In a model of this

kind, the parts of the system that interact according to sets of internal rules (and so without

any external, higher-level drivers of their collective behaviour) are known as ‘agents’. Each

agent in such a model is a self-contained entity with its own individually accessible data, states

and behaviours. The sequences of interactions among agents and the traversal of their states in

a computational simulation correspond to the emergent feedback cycles and phase transitions

of complex systems. If we were able to detect patterns that are precursors to phase transitions

and patterns that correspond to the system’s global dynamics, we would automatically become

aware of emergent phenomena.

Inspired by some of the grand ideas in artificial intelligence, machine learning, and artificial life,

we present the SOMO (self-organised middle-out) algorithm, a concept that might contribute

to the outlined quest. Its goal is dynamic abstraction, i.e. bottom-up learning given enough

training examples and top-down validation to rea�rm or revoke the previously learned concepts.

We take this opportunity to present the SOMO concept with an emphasis on its visionary

aspects—how the idea could evolve from its most recent conception, its current implementation,

towards that desirable, dreamed-about computer after me.

20.2 self-organising middle-out abstraction

Early 2011 we presented the self-organised middle-out (SOMO) concept [268], an approach

that automatically builds abstractions bottom-up and validates and revokes them top-down—

possibly both at the same time but in respect to di↵erent model aspects. As it works in both

directions and as it bridges the gap between the orders of the model, it can be considered to
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operate at the ‘ meso’ level of analysis.

Its foundation is an unsupervised learning method that observes and learns processes which

occur—that is to say, emerge—during a computational simulation. A learned process pattern

provides a shortcut to driving the evolution of the simulation. Instead of considering the series

of all conditions that lead to the process’ changes one step at a time, it su�ces to recognise the

emergence of the process. As a consequence, the detailed interactions are no longer executed

but, whenever the according preconditions hold, the observed side e↵ects are enacted in the

system. Such automatically learned patterns may also be understood as abstracted process

descriptions and they hold the promise of helping us to understand, explain, and compute

complex phenomena in simple terms.

SOMO observes the simulation data and identifies process patterns, ‘biased’ only in terms of

its representations (meaning that the way interaction patterns are represented by SOMO can

influence the kinds of patterns that can be detected and so bias the result). The identified

patterns are used to refine the computational model that drives the simulation process being

observed. As the SOMO algorithm continues to observe and learn the patterns that emerge

from the simulation, it continually increases the model’s level of abstraction by introducing

hierarchies of abstracted patterns. It is hoped that such hierarchies will to some extent co-

incide with the real-world conceptual boundaries that we identify in natural systems, such as

the subdivision of the organisational complexity of animal anatomy into cells, tissues and or-

gans. Since such abstractions are inevitably subject to noise and unknown conditions, we also

introduce a confidence measure that is associated with each abstraction.

In the next section (Section 20.3), we present a variety of concepts that are both inspiring

the SOMO algorithm and closely related to it. Section 20.4 introduces a (borrowed) example

that nicely illustrates the emergence of high-order physiochemical compounds. Based on this

example, we outline the SOMO concept in Section 20.5. Current SOMO implementations are

explained in Section 20.6 and futuristic implementations around it are presented in Section

20.7. In Section 20.8, we conclude with a short vision about SOMO’s potentials.
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20.3 Optimising Graphics, Physics & AI

Various research interests and complementary research trends have been driving the design of

the SOMO concept:

• There is the concept of emergence that tries to capture novel properties and descriptions

of (sub-)systems of higher orders [270].

• There is the need for integrative approaches to representing, modelling and simulating

multi-scale systems—this challenge is currently addressed by passing up and down value

sets from separate, sometimes fundamentally disparate, model components [87, 269].

• And, there is the need for abstraction: a model so comprehensive as to span several

degrees of scale, to host a large body of systems and subsystems, and to independently

consider their intricate behaviours quickly outmatches the computing capacities of even

the greatest of supercomputers.

Abstraction is not only the essence of model building in the first place but it is also the

key to expressive and e�ciently solvable models. We postulate that a model should be as

detailed and as comprehensive as possible, while its (numeric) utilisation for the purpose of

rather specific predictions or simulations should automatically lead to model simplifications and

abstractions. Whenever possible, this should happen without jeopardising the model validity;

whenever necessary, the loss of accuracy the abstractions cause should be made transparent.

SOMO pursues this endeavour by building and maintaining hierarchies of abstractions learned

from observation. The higher the level of hierarchy, the fewer interactions have to be tested.

Such tests are typically intertwined with expensive condition queries—only the state changes

of the simulation will be performed to drive its evolution.

Similar shortcuts by means of hierarchical organisation have been conceptualised and imple-

mented in numerous other contexts. For instance, di↵erent levels of detail (LOD) of computer

graphics resources such as meshes (di↵ering in the numbers of vertices) and textures (di↵ering

in the numbers of pixels) are typically organised in hierarchies to allow for fast access to the

most commonly used assets, whereas the graphics scenes themselves are often subjected to spa-
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tial partitioning hierarchies that allow algorithms to quickly determine which graphics objects

need to be rendered in a given view port [645].

There is a significant overlap between these culling techniques and mechanisms to speed-up

the detection of collisions between geometric objects, one of the foundational functionalities of

physics engines—both rely on the quick discovery of objects at specific locations. In general,

the locations of the geometries may change, which is why the spatial partitioning hierarchies are

dynamically created and adjusted. Dynamic adjustments of the bounding volume hierarchies

are also required if the geometries themselves are dynamic, for instance if they change their

scale. In this case, a method has been shown to yield rather good results that updates the

upper half of the hierarchy bottom-up if one of the geometries changes. The lower half is only

updated selectively in a top-down fashion, as soon as the changed geometry is accessed [509].

Hierarchical optimisations have also been deployed in the field of artificial intelligence. For

example, costly automated planning routines can be pruned early, if high levels of a hierarchy

reflect the adherence of a plan’s most critical variables [646]. Similarly, reflective agents need

to plan their coordination—hierarchical abstractions of their interaction partners may increase

their decision performance, too [647].

20.4 Emergence and Hierarchies in a Natural System

In Rasmussen et al. [10], an approach, or “ Ansatz”, to capturing the emergence of physic-

ochemical compound objects with according emergent properties is described. We want to

use their example to illustrate the mechanics of SOMO. In their experiments, attracting, re-

pelling, and bonding forces among charged monomers and water molecules are shown to result

in higher-order polymer and micelle formations—at each level, the resulting compounds ob-

tain novel physical and chemical properties. In the model, hydrophobic monomers bind to

hydrophilic monomers as well as to polymerised hydrophobic monomers, which results in 2nd-

order amphiphilic polymers which, in turn, aggregate in 3rd-order micelle structures. At each

stage, the resultant compounds exhibit properties di↵erent from the underlying constituents;

The aggregating nature of the process yields compounds of greater size but it also leads to vary-

ing qualitative, geometric structures and di↵erentiated physiochemical behaviours. An adapted

illustration of the emergent process is shown in Figure 20.1.
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Figure 20.1: (a) Hydrophobic and hydrophilic monomers immersed in water. (b) Polymers
emerge as hydrophobic monomers bind to hydrophilic monomers. (c) A micelle-like structure
forms based on aligned polymers with hydrophobic heads and hydrophilic tails. These illustra-
tions are adapted from [10].

The higher-order objects form based on the interactions and (emergent) relationships among

the axiomatic objects of the given model. Often, higher-order objects can be captured as

spatial aggregations but in general they should be regarded as networks of arbitrarily complex

topologies. In accordance with [270], the authors also stress that emergent characteristics of a

(sub-)system are observable in terms of its interactions.

CH2 CH3COOH COOH

Polymer Polymer

Micelle

...

...

Figure 20.2:
Order hierar-
chy.

We reflect the subsumption of individual elements by emergent entities of

greater order in a hierarchical structure. In the given case, polymers are built

from monomers and aggregate to form micelle-like structures (20.2). As Ras-

mussen et al. [10] suggest, an observer needs to identify the emerging units and

their emergent properties; In our approach such observers are immersed in the

simulation and observe the state and interaction patterns of the model entities.

The observers further simplify the entities’ computational representations in

accordance with the learned behavioural patterns. Individual entities and their behaviours are

subsumed by higher order entities that perform the learned patterns only in order to prune

the computational complexity. However, we do not postulate a necessary coincidence between

the learned high-order entities and emergent entities that we ourselves would identify, as in the

micelle-example. Rather, we assume that there is a great chance that the learned patterns and

the ones recognised by humans overlap to some extent—it is possible that the human-identified

orders represent all but a small fraction of the automatically generated abstractions. In order

to clarify this distinction, we step through an exemplary run of the SOMO algorithm in the

next section, using the self-assembly of micelles as a running example.
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20.5 The Technical Concept of SOMO

For our approach, we consider the elements of a model agents, described by their states and

behaviours (for a more in-depth formalisation of the agent concept, consider, for instance,

Denzinger’s generic agent definition [55]). In our example, we distinguish between freely moving

reactive agents that represent molecular compounds (similar to artificial chemistries [394]) and

the environment they are immersed in. In particular, in our running example, a large number

of hydrophobic and hydrophilic monomers is immersed in an aqueous environment. With

the beginning of the simulation, the agents start to interact with each other and with the

environment based on their behavioural rules. Together with the initial configuration of the

system, these rules determine the result of the simulation, and if correctly phrased, they would

result in the emergent phenomena described in the previous section.

20.5.1 Observation of Interactions

In addition to the model agents comprising molecular compounds and the environment, the

SOMO concept introduces observer agents that monitor the interactions of the model agents

as well as the conditions under which they occur. In the context of the micelle-forming ex-

ample, observers do not have to make assumptions about the model agents’ internal states

and behaviours—only their actually triggered, externally observable state boundaries (i.e., the

observed boundaries of the domain over which the state variable is defined) and state changes

are relevant. However, the potency of the observers can be increased by granting them access

to the agents’ behavioural rule sets, to their internal states, and, thus, to their activated rules1.

Following the fundamental concept of cause and e↵ect, the observed interactions are recorded

in terms of states and state changes. States that lead to certain state changes are translated

into boundary conditions, or predicates, whereas state changes simple describe the transition

from one state attribute value to another. Boundary conditions of time (i.e., the agents’ tim-

ing), proximity between agents, or their mere presence or absence come to mind. Conjointly

occurring pairs of boundary conditions and state changes are stored in interaction histories

1Focusing on the observation of state changes deems simpler than considering the underlying, responsible
behavioural representations, as those would have to be correctly interpreted and related to the simulation
context by an external observer.



398 Chapter 20. Present and Future of self-organising Middle-out Abstraction

over a certain period of time. A sliding time window reduces the storage required and lets the

observers “forget” rare or singular events.

In the example, a pair of hydrophilic and hydrophobic monomers may attract each other, then

stick together. A strong correlation between their locations would emerge, quickly resulting in

a static relationship between their position states. The molecules might stick together over a

long period of time. An observer would identify this behaviour and infer from the observations

that these molecules will, under the given conditions, continue to stick together. Therefore,

instead of continuously adjusting their locations based on their proximities at each time step

of the simulation, an abstraction is introduced into the model: For now, the monomers are

considered constantly attracted, or bonded. These bonded monomers, or polymers, are likely to

aggregate in a micelle-like organisation because of the interplay with the aqueous environment:

The polymers’ heads align to face the water molecules, whereas their tails avoid them. Again,

this formation is recognised and learned by the SOMO observers.

Instead of using specialised observers, the agents that make up the model can themselves observe

interactions and the environment. In many cases, however, it is desirable to separate SOMO

logic and the simulation model to maintain a clear distinction between the behaviours of the

automatically learned abstractions and the original model. Independent of the kind of agent

that takes on the task of observation and abstraction, the observers are subjected to certain

restrictions. First, they are subject to an “ event horizon”, i.e., they do not perceive the entire

system but only portions of it. This is due to the fact that an omniscient observer would have

to deal with a vast amount of data, nullifying the scalability benefits SOMO was designed for

and making it necessary to introduce limits of the observations. Second, even though observers

make no assumptions about the model of an observed agent, they are limited to knowledge

they have been granted access to—they can only perceive states and state changes they were

designed to sense. Therefore, if interactions take place hidden from the observers, for instance

direct messaging between agents based on hidden internal states, these interactions will not

become part of the interaction history.

These restrictions bias the abstraction process. If the scope of the simulation is well-defined,

these restrictions can be mitigated rather easily—the SOMO agents can be distributed across

the interaction space to cover important “ hot spots” and the system designer can ensure the

agents’ ability to observe all relevant states and state changes. For more ambitious projects,
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however, it might be necessary to create a wide variety of observers, capable of identifying

many di↵erent kinds of interactions.

Heterogeneous configurations are also possible. For instance, a subset of agents might be part

of the original model and yet observe and abstract others, whereas the remainder of the agent

population might be either model agents or observer agents. Naturally, hybrid agents, that play

both roles, are useful, if an abstraction hierarchy is part of the model. In the following, in order

to avoid additional case distinctions, we will only distinguish between (1) a strict separation

between observer and model agents, and (2) the capacity of all agents to observe and abstract.

20.5.2 Interaction Pattern Recognition and Behavioural

Abstraction

The entries of the interaction history not only comprise some anonymous information about

states and subsequent state changes but they also reference the involved interaction partners.

Similar to [648], we use the interaction histories as databases for finding patterns in the agents’

interaction behaviours. Previously unknown patterns, or motifs, can be identified in time

series relying on various techniques such as learning partial periodic patterns [649], applying

e�cient, heuristic search [650], online motif search [651], and even the identification of patterns

of multiple resolutions [652]. Motif detection is adapted to interaction histories by assigning

symbols, e.g., A or B, to specific log entries and finding patterns in the resulting strings, e.g.,

BBABCCBBABDA. In the given example BBAB is a motif candidate.

The recurring sequence of interactions contained in the motif as well as the conditions that are

part of it can be the basis for a behavioural abstraction. If interactions are recognised repeatedly,

they can be abstracted in several ways—most simply, the predicates are not always checked; in

full glory, a complex sequence of interactions can be fully abstracted and only the aggregated

side e↵ects, i.e. the state changes, can be enacted in the system. Hence, a motif that provides

comprehensive information about the interaction partners and the actual interactions, would

allow to rewrite the agent rules as e�cient sequences of unconditional instructions, with source

and target agents readily in place.

A repeatedly occurring motif in the example system is the interaction between hydrophilic

head and hydrophobic tail of a polymer. As the e↵ect of this interaction stays the same
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once the monomers have bonded, it is not necessary to check these conditions and calculate

the result of the interaction any longer. An observer that has monitored this interaction can

thus suspend the rules that cause the e↵ect but rather enact it directly. Of course, such an

intervention requires direct access to the agents’ rule bases and might not be possible in some

systems (cf. Section 20.5.5). Instead of suspending a specific agent’s behavioural rules directly,

it’s possible to subsume the agent as a whole. The next section will shed more light on this

approach of hierarchical agent subsumption.

20.5.3 Creating and Adjusting Hierarchies

The polymer formation from simpler monomers provides an example for an abstraction even

more powerful than simplifying specific interaction rules: If the agents keep interacting in a

predictive manner, among each other and with their environment, they can be subsumed by

one meta-agent that takes their place and that exhibits their external behaviour without con-

tinuously (re-)evaluating the interactions of its constituting elements. Recursive subsumption

of agents and meta-agents yields a hierarchy of ever more abstract meta-agents.

The formation of hierarchies can be implemented by means of a set of special operators. In order

to establish a hierarchical relationship, an agent might enter another agent. Alternatively, it

might be adopted by another agent. Both actions yield corresponding parent-child relationships

between the two agents. Such a parent-child relationship is reverted by raising a child in the

hierarchy.

Depending on whether the agents observe their own interaction histories or specialised observers

are used in the system, di↵erent kinds of behaviour are possible:

• If an agent observes its own interaction history and detects that it constantly interacts

with another agent (or a group of other agents), it can create a new agent, assign its

own abstracted behaviour, enter this new agent and deactivate itself. The newly created

higher order agent then adopts all other agents that formed the original behaviour, adding

their abstracted behaviour to its own, and deactivating them as well.

• If specialised observers are deployed in the system, they create the meta-agents and assign

the agents to be subsumed to them. The meta-agent then follows the same steps as above.
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The end result in both cases is a meta-agent that behaves just like the group of agents to the

outside but does not need to evaluate internal interactions. The polymer as well as the micelle

are examples of structures that can be abstracted in this fashion. In fact, the micelle shows how

a true hierarchy can form: in the course of the simulation, polymers form first, are detected by

the observers, and abstracted. Then, the polymers form a micelle which is internally stable and

behaves consistently towards its environment. It can thus again be detected and abstracted so

that only interactions between the micelle and the water molecules have to be evaluated.

Repeated applications of these abstraction rules yield continuously growing hierarchies with

increasingly simplified behaviours. At the same time, hierarchies are dissolved when no longer

appropriate. For this purpose, meta-agents repeatedly check for validity of the abstraction they

represent by checking whether the original predicates still hold or by temporarily disbanding the

abstractions, checking for the occurence of the abstracted interactions and either re-abstracting

or abandoning the abstraction.

The subsumption of agents and their behaviours closely resembles the concept of modularisation

and crafting hierarchical code. Figure 20.3 shows an according visual programming perspective

on agents, their behaviours and behavioural interrelations; individual operators (spheres) are

recursively nested to allow for the hierarchical design of behavioural modules, whereas the

connections between inputs and outputs (cones) determine the flow of information at each

hierarchical level [653]. The realisation of this visual modelling language has, in parts, been

motivated by the need of a generic, hierarchical representation of agent behaviours.

20.5.4 Confidence Measures

The identification of motifs in the interaction history as well as the decision to resolve a hierarchy

are based on confidence estimation. There is a large body of work around confidence in statistics

[654] and its e↵ective standardisation for use in the natural sciences is a vivid research area

[655]. Confidence measures are also used in computational models of trust [656]. The general

idea is to estimate the probability that a pattern occurs based on its preceding frequency over

a given period of time.

In SOMO, repeated observation of interaction patterns increases the confidence value. A suf-

ficiently great confidence value leads to abstraction. The confidence value also determines the
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(a)

(b)

(c)

(d)

Figure 20.3: (a) Three quad-copter agents situated closely together. (b) Projection of the
agents’ behavioural operators and their interrelations into the agent space. (c) Focus on the
behavioural network. (d) Introspection of the agents’ behavioural modules reveals hierarchically
nested, lower-level operators and their connectivity.
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abstraction’s lifespan. Confidence metrics that are too generous, i.e., that cause too long ab-

straction lifespans, diminish the accuracy of a simulation. Abstracted behaviours are repeatedly

checked for validity by either exposing the subsumed agents to the environment and observing

their behaviour again or by checking the predicates that have been identified in the abstraction

process. This check can occur at fixed time intervals, at the designated end of the meta-agent’s

lifespan, or based on heuristics such as the degree of activity in its local environment. If the

abstraction proves valid, confidence rises and the checks become less frequent. However, if the

abstraction proves invalid, confidence sinks and the abstraction is either checked more often or

abandoned completely.

In case of miscalculations, the simulation could be reset to a previous simulation state, adjusted

and partially recomputed. This additional overhead might make it hard to reach a gain in

e�ciency. On the other hand, if confidence is assigned too cautiously to motifs, abstraction

hierarchies do not get a chance to form in the first place. Thus, a careful balance has to be

found. Learning methods as introduced in Section 20.5.6 can help find suitable parameters for

concrete scenarios.

20.5.5 Execution Model

Our stated goal is to create a learning abstraction mechanism that makes as few assumptions as

possible about the agents it is working with. However, in order for behavioural abstraction and

hierarchical abstraction to work, the underlying execution model has to fulfil some requirements.

As mentioned before, behavioural abstraction requires that some of the internal rules according

to which an agent operates can be suspended by an external entity. This is a natural assump-

tion if agents observe themselves or if they can issue the rule’s temporary removal (e.g., to a

global simulation engine). However, if the agents are fully opaque and abstraction is performed

by specialised observers, they need to be able to influence them directly. As the system de-

signer usually has complete control over the simulation environment, it should be possible to

implement such a feature within the environment directly.

For hierarchical abstraction, we assume that execution of the agents follows the hierarchy as

well. First, root nodes are considered for execution. Their children are considered recursively,

only if they are active, i.e. if they are not suspended. Deactivating child nodes instead of
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removing them from the simulation entirely is necessary in order to check the abstractions’

validity. Their (inactive) maintenance as part of the simulation hierarchy also serves to update

their states as part of abstracted high-level behaviours.

Since simulations are usually closed systems, it is safe to assume that a benevolence assumption

holds. This means that no agent in the system has an incentive to deceive the observers and

information about states and state changes is provided freely and without inhibition.

20.5.6 Learning SOMO: Parameters, Knowledge Propagation, and

Procreation

As an unsupervised learning approach, the self-organised middle-out learner will have to be able

to learn about itself and thus become self-aware in a sense. A simple example is the requirement

to learn which abstractions worked in the past and which failed to show the desired benefits.

If abstractions had to be quickly dissolved, the SOMO observer that created them obviously

did something wrong. Either its observations were faulty or the parameters were sub-optimal,

e.g., the confidence value that is used to estimate when it is safe to assume that an interaction

actually occurs repeatedly.

On the other hand, multiple SOMO observers deployed in the system should be able to learn

from each other. An abstraction that has proven valid for one observer should not have to

be learned by other observers in the system. Instead, patterns should be propagated and the

knowledge acquired should be spread throughout the system. This way, the SOMO learner

becomes an organic, learning, improving system within the system that constantly revises

and improves its knowledge about the environment and itself by the meta-interaction of the

individual observers.

Thus, SOMO agents learn on two levels: they adapt and improve their individual learning

and abstraction parameters to become well suited for the niche they occupy in the simulation;

and they exchange knowledge with each other and incorporate this knowledge in their decision

making process.

The former kind of learning can be performed based on the data the agents collect and based

on the perceived results of the actions performed by the agents. If a behavioural abstraction
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has proven unstable, the agent can, e.g., increase the confidence value at which it abstracts

behaviour. It would thus have to be more certain that a behaviour occurs repeatedly in the

same fashion before abstracting it. More excitingly, however, an additional feedback loop can be

added to a SOMO learner that uses the data collected by the agent to simulate di↵erent sets of

parameters and the results they would have yielded. Such a simulation-within-the-simulation

can use an evolutionary algorithm (EA) to evolve and test a population of parameter sets,

simulate the learner’s behaviour and use a fitness function that checks whether the parameters

would have found abstractions that have actually proven valid. A parameter set with a high

number of valid abstractions gets a higher fitness value and may be adopted. The EA can

run concurrently and change the parameter settings whenever better results are obtained than

possible with the current parameters. A similar approach has, e.g., been used to create and

simulate new tra�c light switching rules in a tra�c-control scenario [657].

The latter kind of learning, in which patterns, motifs, parameter sets, etc. are propagated in

the system can be implemented using gossiping algorithms [658]. These consensus approaches

are built around local communication in which information is primarily exchanged with neigh-

bours, aggregated, and spread through the system. As the communication is limited to a small

number of agents, the system is scalable and since information is always disseminated along

several trajectories, the system is robust. A major concern in the design of such algorithms is

“eventual consensus”, i.e., ensuring that at one point, all agents have access to the informa-

tion. Fortunately, the SOMO learning approach does not have this requirement as even local

knowledge exchange can improve its e�ciency and thus, relatively simple gossiping protocols

can be used.

Whenever a SOMO agents learns a new set of parameters, a new motif, or that a certain ab-

straction has proven valid, it can provide this information to other agents in its neighbourhood.

These recipients can elect to use this information, e.g., because they are situated in a similar

environment, or discard them. They can also elect to augment or redact the information and

send them on to their own neighbours. This way, knowledge spreads through the system and

allows the learning agents to profit from the experiences of others. Similar techniques have,

e.g., been used to spread reputation information in multi-agent systems [280].

For the transmittal of information between SOMO learners, a language for the knowledge of

the agents has to be defined. Apart from using it in the exchange of information, it can also
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be used to store the knowledge between simulation runs. This way, di↵erent runs of the same

simulation can profit from knowledge learned previously and—if the simulations are similar

enough—di↵erent simulations can re-use knowledge learned previously. A SOMO learner that

is repeatedly used in the same setting can thus evolve along with the simulation and improve

over time.

In settings in which the simulation is highly dynamic, an additional meta-learning approach

can be used. At the start of the simulation, SOMO learners are spread evenly within the

simulation space. If a SOMO agent finds itself in a highly dynamic environment, with many

entities to observe and many interactions, it can procreate by spawning a duplicate of itself.

This new agent carries the same knowledge as its father and can become active in the same

area. Thus, the SOMO system self-organises towards a structure in which learning takes place

in those locations where it is most beneficial and where most interactions occur.

While the outlined meta-learning approaches should improve SOMO’s ability to find valid

abstractions and simplify the simulations, they incur additional computational cost as well as

increase the memory requirements. Therefore, the use of these faculties has to be evaluated

carefully for each new simulation setting and the trade-o↵ between the resources required for

meta-learning and the benefit has to be analysed.

20.6 Current implementations

In several publications, Sarraf Shirazi et. al present the exploration and extension of SOMO im-

plementations in the context of biological simulations [9, 247, 605, 516, 540, 628, 515]. Therein,

the application domain slightly shifted from protein-interaction networks (in context of the

MAPK signalling pathway) towards cell-cell/cell-membrane interaction systems (in context of

blood coagulation processes). More importantly, the model representations underwent an evo-

lution as well: Sarraf Shirazi and his colleagues (one of them is an author of this chapter, S.

von Mammen) first learned clusters of intertwined functions of gene expression rates by corre-

lating their results—initially by means of artificial neural networks, then by means of genetic

algorithms. The second iteration of implementations featured rule-based multi-agent repre-

sentations and sets of learning observer agents that logged and subsumed the activities of the

agents in the simulation. For instance, blood platelets and fibrinogens that are stuck together
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are subsumed by meta-agents with reduced rule sets and which represent the blood clot.

Current SOMO implementations have shown the e↵ectiveness of the concept. In early exper-

iments the number of tests performed as part of the simulation was successfully reduced. In

later experiments, Sarraf Shirazi et al. were able to show that the overall performance, also

considering the computational overhead needed for observing and dynamic learning, can be

improved.

The original SOMO concept foresees the possibility to expose SOMO agents without prior

knowledge to an arbitrary multi-agent simulation to automatically infer hierarchies of patterns

from the observed processes. In order to reach this desirable goal, numerous challenges still

have to be addressed. The universal deployment of the SOMO concept requires, for instance, a

generic learning mechanism for identifying arbitrary patterns (e.g., learning classifier systems

[452]), a universal approach to measuring and comparing confidence values and an accordingly

tuned reinforcement learning mechanism, as well as a comprehensive formalisation of represen-

tation and algorithms.

An example of a meso-level abstraction algorithm with a more technical focus has been pre-

sented by Steghöfer et al. [659] with the HiSPADA algorithm. The Hierarchical Set Partitioning

Algorithm for Distributed Agents forms abstraction hierarchies within an agent society based

on scalability metrics. If an agent system solves a computationally intensive problem that is

defined by the individual agents (such as scheduling in power management scenarios) and that

can be hierarchically decomposed, intermediaries can be introduced to solve parts of the orig-

inal problem. Each intermediary solves a sub-problem that is defined by the agent it directly

controls. The runtime of the problem solver depends on the number of agents controlled by

an intermediary. If it exceeds a certain threshold, an additional layer of intermediaries can be

introduced to divide the controlled agents. An intermediary acts as a black box to the outside,

much like the meta-agents in the hierarchical abstraction. However, the intermediary is not the

result of a learning process based on the interaction patterns of the agents but merely a result

of an internal constraint violation. Nevertheless, the concept has proven to improve scalability

in large systems and provides a starting point for future research.
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20.7 Awareness beyond virtuality

It has already been shown that current implementations of SOMO are capable of pruning

computational complexity in multi-agent based simulations and identifying emergent processes.

A broadly deployable, unbiased SOMO implementation would make it possible to compute

models with large numbers of approximate constants, such as in our perceived reality. This

would make it possible to integrate vast quantities of scientific facts, across all levels of scale

and scientific disciplines, for consideration in simulations.

20.7.1 Integration & emergence

The result would be virtually unlimited computing power for models with large numbers of

approximate constants—as in our perceived reality. Vast amounts of scientific facts, across all

levels of scale and scientific disciplines, could be integrated for consideration in simulations.

The development of an organism could be computed bottom-up from a single fertilised cell. As

we believe SOMO to be principally capable of developing awareness for previously unknown

emergent phenomena—both in-silico and in-vivo—the organism’s systems would be identified

automatically. The recognised patterns are expressed in algorithmic rather than traditional

mathematic representations, and therefore human-readable and comparable to human reason-

ing.

20.7.2 Model inference

What is more, the SOMO concept need not be limited to virtual simulations. Heuristic learn-

ing methods could supply feasible solutions for gaps in theories, for which empiric researchers

haven’t provided answers yet. However, instead of limiting SOMO to virtual simulations, it

could operate on top of a smart sensory network ( SOMO net), an advanced wireless sensor

networks (cf., e.g., [660]). Enhancing SOMO sensory nodes with e↵ectors would further in-

troduce the capability of self-directed inquiry. At this point, the SOMO net could turn into

a self-reflective machinery similar to the one developed by Lipson and Pollack [661] that also

grew, the other way round, into a system to automatically infer complex, non-linear mathemat-



20.7. Awareness beyond virtuality 409

ical laws from data sets by avoiding trivial invariants [662]. SOMO net enhanced in this way

would be able to autonomously perform observational analysis and pro-active investigations to

further accelerate the generation of comprehensive and accurate scientific models.

20.7.3 SOMO net

In addition to the sensory functionalities present in a subset of nodes of the envisioned SOMO

net, all the nodes would have to provide a runtime environment for a SOMO agent. To begin

with, the initialised, networked SOMO agent—a conceptual descendant of the SOMO observer

as deployed in virtual simulation environments—would sense and transmit data to its neigh-

bours and, in turn, aggregate any received information. The analogies to distributed learning

approaches are obvious, especially in the context of wireless sensor networks [663]. However

despite the common notion of a global learning task, distributed data sources, and e↵orts to

fuse the aggregated data, the SOMO reaches further.

Quickly, a SOMO agent would learn patterns in the sensed and received, transmitted data

and refine its sensing configuration and communication connectivity based on the greatest

information gain: it would direct its inquiries to areas of interest, i.e., sensor ranges or nodes

that provide (from its perspective) unpredictable information. Depending on the confidence

values associated with the learned patterns, the original data sources would be queried once in

a while in order to test the abstractions’ validity.

As the learned patterns would reference the learning context, i.e., the network location and

connectivity of the learning agent, the abstracted information can be passed down the network,

enriching the other agents’ data bases, without causing confusion. Whenever possible, patterns

could be subsumed in higher level abstractions, the validation process stretching across the

network.

The self-organised, decentralised learning and validation algorithm would ensure that the sys-

tem under observation is described at several levels of abstraction, based on the input on

numerous nodes with their individual perspectives. At the same time, it would ensure that the

processing and communication costs of the networked nodes is minimised—which is of crucial

importance for the e�cacy and longevity of a wireless sensor network.



410 Chapter 20. Present and Future of self-organising Middle-out Abstraction

20.7.4 SOMO after me

SOMO and SOMO nets would make correlations between processes apparent that have never

been thought of before. These new insights, could, due to the immense complexity that SOMO

promises to handle, help to build sustainable, progressive, evolving economic and ecological

infrastructures for the great challenges of human kind.

At the same time, accessible methodologies for large-scale data modelling and exploration would

become an (even more) important limiting factor. In order to counter this arising challenge, we

have been developing INTO3D, an integrated visual programming and simulation environment

[653]. Combined with SOMO’s computing abilities such environments could make model-

building and simulation feasible and attractive to non-scientists, or rather, they could turn

anyone into a scientist and revolutionise everyday life.

20.8 The future of SOMO

In summary, the SOMO algorithm and SOMO nets hold the promise of revealing hitherto un-

suspected correlations between processes. Such new insights, and the immense complexity that

SOMO can handle, would help to build the sustainable, progressive and evolving economic and

ecological infrastructures for tackling the major challenges humankind faces today. Our current

work on SOMO is focused on pattern detection in observed interactions and the possibilities

for propagating knowledge about abstractions through the system. Once the implementations

of SOMO have reached maturity, we envisage that research can shift to analysing how the

learned abstractions and features correlate with the behaviours we find in higher order emer-

gent phenomena. Whether we will find striking similarities, or instead discover these to be two

completely di↵erent forms of complex systems, remains an exciting open question at this time.
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Conclusion

Interactive self-organisation represents the next step of evolution in self-organisation research.

By introducing the user into the simulation-loop, he can immensely benefit from the concept

of self-organisation. After all, self-organisation not only describes a complex system with a

potential for emergent phenomena, but it also shows the user how local and global processes

are linked, it gives the user the opportunity to change them bottom-up, top-down or middle-

out. Novel computer scientific techniques make this happen, both in terms of algorithmic,

technical solutions and approaches of user interaction and visualisation. In this habilitation

thesis, we cumulated eighteen published scientific works that introduced according techniques

and application scenarios. In order to fully harness the potential of interactive self-organisation,

research towards all of the aspects touched upon in this thesis as well as their integration and

unification has to continue. As a result, one of the primary goals of interactive self-organisa-

tion, next to its application, needs to be a consolidated framework that seamlessly combines

management, visual programming, exploration, inspection, modulation, and analysis of vast,

multi-scale self-organising system models and simulations. Work on the following research tasks

would contribute to this goal.

In order to make inter-agent relationships and agent behaviours editable through graph-based

visual interfaces, it would help to find ways to establish di↵erent meanings for di↵erent edges. In

Chapter 12 labels fulfil this requirement, but there are myriad ways of visualising directed edges

and it would be rather beneficial to utilise this freedom of representation in order to convey

meaning. One could, for instance, change the basic graphical properties of the edges, make

411
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them slimmer or wider, scale their heads, change their colours, etc. depending on the concrete

meaning of a relationship or merely on its general classification. While all these options seem

to be equally valid, some of them work better than others, which results in a clear mandate for

visualisation research. It also presupposes the design of a consistent vocabulary that emerges

from a versatile, axiomatic, extensible representation. Additional questions that arise in the

context of local rule definition relate to the deeper integration of graphical and textual editing,

i.e. whether textual input should be omitted, how it could be integrated in a non-disruptive way,

and how provision of detailed information can be warranted in an otherwise visual modulation

environment.

Also, at this point, we only have little insight into the optimal work flow of modelling be-

havioural logic and model properties (other than linear transformations) in simulation spaces.

It is an obvious choice to support this endeavour with the latest virtual reality gear not only to

increase the accuracy of spatial interactions but to maximise the benefit of three-dimensionally

rendered spatial relationships, too. There are all sorts of design decisions that need to be

inquired about, such as the relationship between 3D user interface elements and heads-up dis-

play information, the utilisation of drag-and-drop techniques, or the seamless integration of

navigation. Furthermore, we need to better understand the benefits and shortcomings of iso-

lated editing spaces and re-design the immersive 3D modelling interfaces accordingly. Only a

systematic taxonomy to categorise and orderly draw out the interaction tasks involved in mod-

ulation of self-organising systems can help to identify all the intricacies of the process and to

unify them. Generally speaking, human-computer interaction research in terms of navigation,

selection, manipulation and control of self-organising systems has just recently begun, while

emerging virtual reality technologies promise to revolutionise the interaction possibilities with

spatial systems.

Despite all e↵orts, users of visual programming environments make mistakes. Due to the

prevention of syntactical errors by means of the user interface, they are mostly of semantical

nature. Established techniques such as the utilisation of puzzle-like visual environments, that

allow the user to combine programmatic building blocks, need to be adjusted and refined, if

translated into the modulation spaces of interactive self-organisation. Programming in three

dimensions also opens up new paths towards dynamic and static data typing. The desired

data types could be manually built in graph-based editors and scaled replica of their visual
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representations could be utilised as connectors for the respective edges. This would allow to

recognise not only a mismatch but even indicate the part of a data structure where it occurs.

When debugging a model, the amalgamation of modelling space and simulation space yields

the great advantage that, for example, wrong assignments or poorly configured interactions

can be immediately discovered—if the modeller has a clear notion about the system and it is

visually represented, deviations from his cognitive model can be identified faster.

The specification of high-level goals is supposed to complement the process of programming

low-level details. This functionality is especially important in the context of interactive self-or-

ganisation, since the low-level behaviours of a target system might not be known to the modeller

(in advance). Typically, high-level goals are specified as mathematical constraints, logic terms,

or algorithmically. An according, comprehensive visual vocabulary does not exist, yet. Chapter

17 details the possibility to provide graphical input constraints, whether they represent actual

spatial constraints in 2D or 3D, or whether the user can predefine time series. Additional

research needs to be conducted to innovate e↵ective interfaces to edit these constraints, to

specify their boundaries and data types, to scale them, and, ideally, to relate them to their

target entities, interactions, processes and structures. Whenever possible, widgets should be

made available to blend these activities into a general interactive self-organisation framework.

Scaling capacities of computation as well as storage and retrieval is of great importance in

interactive self-organisation, too. The user expects from any sort of content creation tool that

even his most minute changes can be recovered, if a power failure occurs, that he can go back

arbitrary steps in his interaction history, that he can branch o↵ simulation paths to explore

alternative model configurations, that he can review individual experiments, compare them,

work on them collaboratively, possibly remotely, etc. Creating such functionalities is disentan-

gled by following the component software engineering pattern (Chapter 15). Yet, depending

on the model sizes, these operations can be rather expensive and their e�cient execution is

tied to an e�cient hardware setup. Given a specific networked infrastructure, the problem is

to optimally manage data persistence alongside the distributed organisation of multiple highly

optimised simulation engines. To this end, we promote research into a unified kernel model for

distributed component engines and distributed scalable database systems.

It is mandatory to introduce new components to interactive self-organisation frameworks, e.g.

for networking, and improving the underlying engines, e.g. graphics engines making use of
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state-of-the-art shader hardware. We have, for example, identified the integration of the latest

augmented reality rendering techniques as a greatly beneficial asset. Augmented reality is an

important outlet for interactive self-organisation as it directly translates calculated results into

real contexts. In our experiments [112], we were able to augment reality with interactive self-

organising models of so-called biohybrid systems. Although the testers were able to achieve

the set goals, the lack of integration into the real lighting settings had a consistently damaging

impact on both usability and user experience. Hardware limitations (especially the fact of

wearing tethered gear) posted the other main issues in our experiments. Gladly, these hurdles

are being taken care of by the technology industry. Another example of an important extension

of component engines is the integration of the FLEX particle-based physics engine into our

modulation system for developmental biology. It allows us to outsource costly calculations

to the graphics processing unit and, more importantly, empowers us to model the physical

interactions of material with di↵erent properties in a shared simulation environment. These

include rigid bodies, deformable bodies and fluids. As pointed out in Chapter 5, it has been

shown that in simulations of developmental biology, the consideration of physically accurate

models plays an important role to retrace actual self-organising biological processes.

With respect to runtime optimisation, the promising work around self-organised middle-out ab-

straction should be continued. In order to foster basic research in this field, we suggest collective

motion as the targeted model domain. It is well-studied, it covers a wide range of phenomena,

including laminar and turbulent flows, and various flock and group formations, and it is limited

to reactive agents. Moreover, we propose the deployment of Organic Computing techniques in

order to realise the original SOMO concept from 2011. The steps towards a versatile, robust

SOMO implementation include retracing data sets of established domain models, the definition

and implementation of error measures for comparing simulated processes, and the deployment

of di↵erent learning mechanisms used by observer/controller agents that can be immersed in

the targeted model simulation. An extensive investigation of the resulting performances regard-

ing the given models with varying configurations as well as with respect to hierarchical model

abstraction methods needs to follow suit. To complete the research and development cycle, one

would have to redesign and hone the application programming interface of OSOM to make it

broadly applicable. Another direction for SOMO research could investigate the possibilities to

run the overhead of OSOM in parallel to the domain model simulation or to outsource it to the

GPU. As outlined in Part I, building on SOMO one could make model optimisation tangible,
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allow the users to help in the abstraction process, to guide the self-organisation dissemination

and evolution of abstraction agents and their knowledge bases.

Interactive self-organisation research can hardly come to fruition, if it is not linked to specific

use cases. The demonstration of the merits of applied interactive self-organisation not only

gives the opportunity to analyse the feasibility and track the impact of a novel approach but

it also plays an important role in guiding the direction of interactive self-organisation research.

The methods and results presented in this thesis are mainly independent of technical self-or-

ganising solutions. However, the current trends in augmented reality and robotics allow us to

acknowledge that technical self-organising solutions will occur in all the presented application

domains, and potentially in many more, in the near future. This perspective spurs the moti-

vation to conduct interactive self-organisation research all the more, as its demand will soar

alongside its emerging applications and successes.
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Report of Kassenzahnärztliche Bundesvereinigung (KZBV), 2014.

[307] S. Friedman, “Prognosis of initial endodontic therapy,” Endodontic Topics, vol. 2, no. 1,

pp. 59–88, 2002.

http://www.nlm.nih.gov/research/visible/visible_human.html


454 BIBLIOGRAPHY

[308] J. Siqueira, “Aetiology of root canal treatment failure: why well-treated teeth can fail,”

International Endodontic Journal, vol. 34, no. 1, pp. 1–10, 2001.

[309] G. B. Leoni, M. A. Versiani, J. D. Pécora, and M. Damião de Sousa-Neto, “Micro–
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“Cellulat: an agent-based intracellular signalling model,” Bio Systems, vol. 68, no. 2-3,

pp. 171–85, 2003.

[623] S. Khan, R. Makkena, F. McGeary, K. Decker, W. Gillis, and C. Schmidt, “A multi-agent

system for the quantitative simulation of biological networks,” in AAMAS ’03: Proceed-

ings of the second international joint conference on Autonomous agents and multiagent

systems, (New York, NY, USA), pp. 385–392, ACM, 2003.



BIBLIOGRAPHY 483

[624] S. Haykin, Neural Networks: A Comprehensive Foundation. New York: Macmillan, 1994.

[625] Z. Wang, C. M. Birch, J. Sagotsky, and T. S. Deisboeck, “Cross-scale, cross-pathway eval-

uation using an agent-based non-small cell lung cancer model.,” Bioinformatics (Oxford,

England), vol. 25, pp. 2389–96, Sept. 2009.

[626] M. Scheutz and P. Schermerhorn, “Adaptive algorithms for the dynamic distribution and

parallel execution of agent-based models,” Journal of Parallel and Distributed Computing,

vol. 66, no. 8, pp. 1037–1051, 2006.

[627] M. Lysenko and R. M. D’Souza, “A framework for megascale agent based model simula-

tions on graphics processing units,” Journal of Artificial Societies and Social Simulation,

vol. 11, no. 4, p. 10, 2008.

[628] S. von Mammen, A. Sarraf Shirazi, V. Sarpe, and C. Jacob, “Optimization of swarm-

based simulations,” ISRN Artificial Intelligence, vol. Article ID 365791, pp. 1–12, 2012.

[629] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens, M. Segal,

M. Papakipos, and I. Buck, “GPGPU: general-purpose computation on graphics hard-

ware,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,

(New York, NY, USA), p. 208, ACM, 2006.

[630] J.-P. Müller, “Emergence of Collective Behaviour and Problem Solving,” in Engineering

Societies in the Agents World IV (A. Omicini, P. Petta, and J. Pitt, eds.), vol. 3071 of

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2004.

[631] S. Wolfram, “Statistical mechanics of cellular automata,” Reviews of Modern Physics,

vol. 55, no. 3, p. 601, 1983.

[632] A. Deutsch and S. Dormann, “Introduction and Outline,” in Cellular Automaton Modeling

of Biological Pattern Formation, Modeling and Simulation in Science, Engineering and

Technology, pp. 3–11, Birkhäuser Boston, 2005.
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